Читаем Золотое сечение [Математический язык красоты] (Мир математики. т.1.) полностью

Последовательность Шимпера — Брауна, состоящая из отношений чисел из последовательности Фибоначчи соответственно к числам, следующим через позицию, ajап+2, позволяет классифицировать многие виды по углу расхождения. Так как отношение между двумя последовательными числами аn+1/аn стремится к Ф, отношения из последовательности Шимпера — Брауна стремятся к 1/Ф2. Математическое доказательство выглядит следующим образом:

По-настоящему сложный вопрос заключается в том, откуда растения «знают», что их листья должны быть расположены в соответствии с последовательностью Фибоначчи? Дело в том, что стебель растения имеет коническую форму. Листья на стебле растут радиально, если смотреть на растение сверху. Браве заметил, что каждый следующий лист повернут примерно на 137,5° от предыдущего. Посчитаем

360°∙1/Ф2 = 360°/Ф2

(где 360° соответствует полному обороту) и получим угол в 137,5°, который иногда называют «золотым» углом.

Идя в противоположном направлении, от математики к ботанике, группа ученых во главе с Ривьером доказала в 1984 г., что, используя математический алгоритм и угол роста, равный «золотому» углу, можно получить конфигурации, подобные тем, которые встречаются у реального подсолнечника. Это заключение было интересно тем, что именно однородные и сопоставимые структуры в живых организмах резко ограничивают их возможные формы. В свою очередь, это объясняло частое появление чисел Фибоначчи и золотого сечения в филлотаксисе. Другие эксперименты, например, с магнитными полями, также приводят к конфигурациям с «золотой» спиралью.

Каждый следующий лист на стебле подсолнечника повернут примерно на 137,5° от предыдущего.

В этом распределении виртуальных семян, сгенерированном компьютером, можно ясно увидеть большое количество спиралей в разных направлениях. Количества спиралей похожей длины в обоих направлениях обычно соответствуют числам из последовательности Фибоначчи.

Классический эксперимент в этой области был проведен в 1907 г. немецким математиком Герритом ван Итерсоном. Он расположил последовательные точки по спирали с поворотом на 137,5° и показал, что человеческий глаз воспринимает их как семейство спиралей, закрученных по часовой и против часовой стрелки. Количество спиралей в этих двух семействах, как правило, соответствует числам Фибоначчи. Подсолнечник — один из самых ярких примеров этого явления. Его семена образуют спирали по часовой и против часовой стрелки. Количества таких спиралей являются числами из последовательности Фибоначчи. Наиболее часто встречаются пары 21 и 34, 34 и 55, 89 и 144.

Что это: внутренняя закономерность роста или просто удивительное совпадение?

Подсолнечник содержит 21 и 34 спирали в противоположных направлениях.

Ветви деревьев расположены так же, как и листья растений. Опять же, ветви растут не одна над другой, а по спирали. Размер дерева меняется по ходу его роста, но пропорции между высотой и длиной его ветвей сохраняются, как и общая форма. Благодаря этому опытный наблюдатель может отличить один вид от другого на расстоянии, не рассматривая листья или кору вблизи.

Тысячелистник птармика (Achillea ptarmica) — одно из многих растений, у которого ветки и листья расположены в соответствии с последовательностью Фибоначчи.

Цветы и лепестки

Число лепестков многих цветов также соответствует некоторым членам последовательности Фибоначчи, например, у сирени (3 лепестка), лютика (5), шпорника (8), календулы (13) и астры (21). Различные виды ромашки имеют разное количество лепестков, но это всегда числа Фибоначчи (21, 34, 55, 89).

Типичной сценой в любовных рассказах является гадание на ромашке: отрывая лепесток за лепестком, герои спрашивают «любит — не любит». Можно подумать, что у влюбленного математика будет преимущество при отрывании лепестков ромашки, но это не так. К счастью, природа и последовательность Фибоначчи оставляют место для случайности, и цветок всегда будет хранить тайну. Хотя количество лепестков ромашки является числом Фибоначчи, это число может быть как четным, так и нечетным, и мы не узнаем сколько лепестков имеет конкретная ромашка, пока не закончим их обрывать.

Может показаться, что, как и в архитектуре, золотая пропорция в растениях встречается неестественно часто и явно. Тем не менее, строгие эксперименты в этой области дают пищу не только для размышлений, но и для эстетического наслаждения.

Количество лепестков ромашки всегда является числом из последовательности Фибоначчи, в данном случае, 21.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное