Немецкий астроном Иоганн Кеплер с очень раннего возраста был сторонником гелиоцентрической теории Солнечной системы. Эта гипотеза была высказана его польским коллегой Коперником, который утверждал, что планеты вращаются вокруг Солнца, а не вокруг Земли. Однако официальная теория настаивала на том, что Земля является центром Вселенной, и другие убеждения могли привести к тюремному заключению.
Кеплер верил в пифагорейскую теорию, что все управляется числами. Он считал, что известная нам Вселенная основана на пяти Платоновых телах (единственно возможных правильных многогранниках).
Кеплер попытался построить геометрические модели орбит шести планет, известных в то время. Он изложил это в своей первой книге Mysterium Cosmographicum («Тайна мира») в 1596 г., попытавшись объяснить строение мира, следуя греческой идее «гармонии».
Модель Кеплера выглядит следующим образом: «Орбита Земли есть мера всех орбит. Опишем додекаэдр вокруг нее. Описанная вокруг него сфера является орбитой Марса. Опишем тетраэдр вокруг орбиты Марса. Описанная вокруг тетраэдра сфера является орбитой Юпитера. Опишем куб вокруг орбиты Юпитера. Описанная вокруг куба сфера является орбитой Сатурна. Теперь впишем икосаэдр в орбиту Земли. Вписанная в него сфера является орбитой Венеры. Впишем октаэдр в орбиту Венеры. Вписанная в него сфера является орбитой Меркурия».
Так немецкий математик построил красивую и гармоничную модель, которая отвечала наблюдениями того времени, с незначительными ошибками. Однако эта теория не имела ничего общего с реальностью, что сам Кеплер вынужден был признать вскоре после публикации.
* * *
Филлотаксис и математика стали единой теорией в XIX веке благодаря немецкому естествоиспытателю Карлу Шимперу (1803–1867) и французскому кристаллографу Огюсту Браве (1811–1863). Они оба обнаружили в сосновых шишках числа из последовательности Фибоначчи. Их исследования показали, что модели филлотаксиса могут быть выражены отношениями чисел Фибоначчи.
С тех пор последовательность Фибоначчи и ботаника связаны друг с другом. В 1968 г. американский математик Альфред Броссо изучил 4290 шишек десяти различных видов калифорнийской сосны и доказал, что с незначительным исключением (74 шишки) в остальных проявляется последовательность Фибоначчи. То есть 98,3 % выборки. Как это часто бывает, спустя некоторое время научное сообщество в качестве проверки повторило эксперимент. В 1992 г. канадский ботаник Роджер Жан провел исследование 12750 экземпляров 650 различных видов. На этот раз последовательность Фибоначчи появилась в 92 % случаев.
Листья большинства растений с высоким стеблем расположены по спирали и, как правило, следуют определенному закону, который выполняется для всех видов растений. Закон гласит, что угол, образуемый двумя последовательными листьями, является постоянным и называется углом расхождения. Этот угол может быть выражен в градусах или в виде дроби, где в числителе стоит число оборотов вокруг стебля, начиная с одного листа до такого же выше по стеблю, а в знаменателе стоит число листьев, расположенных на спирали между этими двумя листьями.