Читаем 5a. Электричество и магнетизм полностью

Глава 6

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ


§1.Уравнения электростатиче­ского потенциала

§2.Электрический диполь

§3.3амечания о векторных уравнениях

§4.Дипольный потенциал как градиент

§5.Дипольное приближение для произвольного распределения

§6.Поля заряженных проводников

§7. Метод изображений

§8.Точечный заряд у проводящей плоскости

§9.Точечный заряд у проводящей сферы

§10.Конденеаторы; параллельные пластины

§11.Пробой при высоком напряжении

§12.Ионный микроскоп

Повторить: гл. 23 (вып. 2) «Резонанс»


§ 1. Уравнения электростатического потенциала

В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятель­ствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математи­ческими методами, используемыми для опреде­ления поля.

Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:


(6.1)



(6.2)

Фактически оба эти уравнения можно объ­единить в одно. Из второго уравнения сразу же следует, что поле может считаться гра­диентом некоего скаляра (см. гл. 3, § 7):

(6.3)

Электрическое поле каждого частного ви­да можно, если нужно, полностью описать с помощью потенциала поля j. Дифферен­циальное уравнение, которому должно удо­влетворять j, получится, если (6.3) подста­вить в (6.1):


(6.4)

Расходимость градиента j—это то же, что С2, действующее на j:


(6.5)

так что уравнение (6.4) мы запишем в виде

(6.6)

Оператор С2 называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с мате­матической точки зрения заключается просто в изучении реше­ний одного-единственного уравнения (6.6). Как только из (6.6) вы найдете j, поле Е немедленно получается из (6.3).


Обратимся сперва к особому классу задач, в которых r задано как функция х, у, z. Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если r в каждой точке известно, то потенциал в точке (1) равен

(6.7)

где r(2) — плотность заряда, dV2 — элемент объема в точке (2), а r12 — расстояние между точками (1) и (2). Решение диф­ференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:

и (6.7) является прототипом решения любой такой задачи.

Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех за­рядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.

§ 2. Электрический диполь


Сначала возьмем два точечных заряда +q и -q, разделенных промежутком d. Проведем ось z через заряды, а начало коор­динат поместим посредине между ними (фиг. 6.1). Тогда по фор­муле (4.24) потенциал системы двух зарядов дается выраже­нием

Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.

Существует важный частный случай этой задачи, когда за­ряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незна­чительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.

Фиг. 6.1. Диполь: два заряда +q и -q, удаленные друг от друга на расстояние d.

«Дипольную» антенну можно часто приближенно рассматривать как два за­ряда, разделенные неболь­шим расстоянием (если нас не интересует поле у са­мой антенны). (Обычно ин­терес представляют антенны с движущимися зарядами; уравнения статики тогда не­применимы, но для некоторых целей они все же представ­ляют весьма сносное приближение.)

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука