ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ
§1.Уравнения электростатического потенциала
§2.Электрический диполь
§3.3амечания о векторных уравнениях
§4.Дипольный потенциал как градиент
§5.Дипольное приближение для произвольного распределения
§6.Поля заряженных проводников
§7. Метод изображений
§8.Точечный заряд у проводящей плоскости
§9.Точечный заряд у проводящей сферы
§10.Конденеаторы; параллельные пластины
§11.Пробой при высоком напряжении
§12.Ионный микроскоп
§ 1. Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятельствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математическими методами, используемыми для определения поля.
Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:
(6.1)
(6.2)
Фактически оба эти уравнения можно объединить в одно. Из второго уравнения сразу же следует, что поле может считаться градиентом некоего скаляра (см. гл. 3, § 7):
(6.3)
Электрическое поле каждого частного вида можно, если нужно, полностью описать с помощью потенциала поля j. Дифференциальное уравнение, которому должно удовлетворять j, получится, если (6.3) подставить в (6.1):
(6.4)
Расходимость градиента j—это то же, что С2
, действующее на j:(6.5)
так что уравнение (6.4) мы запишем в виде
(6.6)
Оператор С2
называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с математической точки зрения заключается просто в изучении решений одного-единственного уравнения (6.6). Как только из (6.6) вы найдете j, поле Е немедленно получается из (6.3).Обратимся сперва к особому классу задач, в которых r задано как функция
(6.7)
где r(2) — плотность заряда, dV2
— элемент объема в точке (2), а r12 — расстояние между точками (1) и (2). Решениеи (6.7) является прототипом решения любой такой задачи.
Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех зарядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.
§ 2. Электрический диполь
Сначала возьмем два точечных заряда +
Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.
Существует важный частный случай этой задачи, когда заряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незначительным. Такую тесную пару зарядов называют
«Дипольную» антенну можно часто приближенно рассматривать как два заряда, разделенные небольшим расстоянием (если нас не интересует поле у самой антенны). (Обычно интерес представляют антенны с