Читаем 5a. Электричество и магнетизм полностью

Важнее, пожалуй, диполи атомные. Если в каком-то веще­стве есть электрическое поле, то электроны и протоны испыты­вают влияние противоположных сил и смещаются друг относи­тельно друга. Вы помните, что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращает­ся в нуль. В изоляторе электроны не могут сильно разой­тись; им мешает притяжение ядра. И все же они как-то смеща­ются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по срав­нению с промежутками между зарядами.

В некоторых молекулах из-за самой их формы заряды не­сколько разделены даже в отсутствие внешних полей. В моле­куле воды, например, имеется отрицательный заряд на атоме кислорода и положительный заряд на обоих атомах водорода, которые расположены несимметрично (фиг. 6.2). Хоть заряд всей молекулы равен нулю, все же имеется распределение за­ряда с небольшим преобладанием отрицательного заряда на од­ной стороне и положительного на другой. Это расположение, конечно, не такое простое, как у двух точечных зарядов, но если смотреть на него издалека, оно действует как диполь. Как мы увидим чуть позже, поле на больших расстояниях нечувстви­тельно к мелким деталям расположения.


Фиг. 6.2. Молекула воды Н2O.


Взглянем теперь на поле двух зарядов противоположных знаков, расстояние d между которыми мало. Если d станет ну­лем, два заряда сойдутся в одном месте, два потенциала сокра­тятся, поле исчезнет. Но если они не совсем слились, то можно получить хорошее приближение к потенциалу, разложив сла­гаемые в (6.8) в ряд по степеням малой величины d (по формуле бинома Ньютона). Оставляя только первые степени d, мы напи­шем


Удобно обозначить


Тогда



и


Разлагая в биномиальный ряд [1 — (zd/r2)]-1/2 и отбрасывая члены с высшими степенями d, мы получаем


Подобно этому,


Вычитая эти два члена, имеем для потенциала



(6.9)

Потенциал, а значит, и поле, являющееся его производной, пропорциональны qd — произведению заряда на расстояния меж­ду зарядами.

Фиг. 6.3. Векторные обозначения, для диполя.

Это произведение называется диполъным моментом пары зарядов, и мы обозначим его символом р (не путайте с импульсом!):


(6.10)

Уравнение (6.9) можно также записать в виде

(6.11)

так как z/r=cosq, где q — угол между осью диполя и радиус-вектором к точке (х, у, z) (см. фиг. 6.1). Потенциал диполя убы­вает как 1/r2 при фиксированном направлении (а у точечного заряда он убывает как 1/r). Электрическое поле Е диполя по­этому убывает как 1/r3.

Мы можем записать нашу формулу и в векторном виде, если определим р., как вектор, абсолютная величина которого равна р, а направление выбрано вдоль оси диполя от q-к q+. Тогда

(6.12)

где еr— единичный радиальный вектор (фиг. 6.3). Кроме того, точку (x, y, z) можно обозначить буквой r. Итак, Дипольный потенциал:

(6.13)

Эта формула справедлива для диполя произвольной ориентации и положения, если r — вектор, направленный от диполя к ин­тересующей нас точке.


Если нас интересует электрическое поле диполя, то нужно взять градиент j. Например, z-компонента поля есть -dj/dz. Для диполя, ориентированного вдоль оси z, мы можем исполь­зовать (6.9):


Фиг. 6.4. Электрическое поле диполя.


или

(6.14)

А х- и y-компоненты равны


Из этих двух компонент можно составить компоненту, пер­пендикулярную к оси z, которая называется поперечной компонентой E^:


или


(6.15)

Поперечная компонента Е^лежит в плоскости ху и направ­лена прямо от оси диполя. Полное поле, конечно, равно


Поле диполя меняется обратно пропорционально кубу рас­стояния от диполя. На оси при 6 =0 оно вдвое сильнее, чем при 9 =90°. При обоих этих углах электрическое поле обладает только z-компонентой. Знаки ее при 2=0 и при z=90° проти­воположны (фиг. 6.4).

§ 3. Замечания о векторных уравнениях

Здесь, пожалуй, уместно сделать общее замечание, касаю­щееся векторного анализа. Хотя его теоремы и доказаны в общем виде, однако, приступая к расчетам и анализу какой-либо за­дачи, следует с толком выбирать направление осей координат. Вспомните, что когда мы вычисляли потенциал диполя, то ось выбиралась не как попало, а мы направили ее по оси диполя.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука