Читаем 5a. Электричество и магнетизм полностью

Это намного облегчило нашу задачу. Потом уже уравнения были переписаны в векторной форме и сразу перестали зависеть от выбора системы координат. Теперь стало возможным выби­рать какую угодно систему координат, зная, что формула от­ныне всегда будет справедлива. Вообще нет смысла вводить произвольную систему координат, где оси направлены под ка­ким-то сложным углом, если можно в данной задаче выбрать систему получше, а уже в самом конце выразить результат в виде векторного уравнения. Так что старайтесь использовать то преимущество векторных уравнений, что они не зависят ни от какой системы координат.


С другой стороны, если вы хотите подсчитать дивергенцию какого-то вектора, то вместо того, чтобы смотреть на у·Е и вспоминать, что это такое, лучше расписать это в виде


Если вы затем вычислите по отдельности х-, у- и z-компоненты электрического поля и продифференцируете, то получите иско­мую дивергенцию. Часто при этом испытывают такое чувство, как будто произошло что-то некрасивое — словно, расписав вектор покомпонентно, потерпели неудачу; все время кажется, будто все действия надо проделывать только с векторными опе­раторами С. Но часто от них нет никакого проку. Когда вы впер­вые сталкиваетесь с какой-то новой задачей, то, как правило, полезно расписать все в компонентах, чтобы удостовериться, что вы правильно представляете себе, что происходит. Нет ничего некрасивого в том, что в уравнения подставляются числа, и нет ничего неприличного в том, чтобы подставлять производные на место причудливых символов. Наоборот, в этом-то и проявляется ваша мудрость. Конечно, в специальном журнале статья будет выглядеть гораздо приятнее (да и понят­нее), если все записано в векторном виде. Но там надо эконо­мить еще и место.

§ 4. Диполъный потенциал как градиент


Мы хотели бы теперь отметить любопытное свойство формулы диполя (6.13). Потенциал можно записать также в виде

(6.16)

Действительно, вычислив градиент 1/r, вы получите


и (6.16) совпадет с (6.13).



Фиг. 6.5. Потенциал в точке Р от точечного заряда, поднятого на Dz над началом координат, равен потенциалу в точке Р' (на Dz ниже Р) того же заряда, но помещенного вначале координат.

Как мы догадались об этом? Мы просто вспомнили, что er/r2 уже появлялось в формуле для поля точечного заряда и что поле — это градиент потенциала, изменяющегося как 1/r.

Существует и физическая причина того, что дипольный по­тенциал может быть записан в форме (6.16). Пусть в начало коор­динат помещен точечный заряд q. Потенциал в точке Р(х, у, z) равен


(Множитель 1/4pe0 опустим, а в конце мы его можем снова вста­вить.) Если заряд +q мы сдвинем на расстояние Dz, то потен­циал в точке Р чуть изменится, скажем на Dj+. На сколько же именно? Как раз на столько, на сколько изменился бы потен­циал, если б заряд оставили в покое, а Р сместили на столько же вниз (фиг. 6.5). Иначе говоря,


где Dz означает то же, что и d/2. Беря j0=q/r, мы получаем для потенциала положительного заряда



(6.17)

Повторяя те же рассуждения с потенциалом отрицательного заряда, можно написать

(6.18)

А общий потенциал—просто сумма (6.17) и (6.18):

(6.19)


При других расположениях диполя смещение положи­тельного заряда можно изобразить вектором Dг+, а уравне­ние (6.17) представить в виде

где Dr впоследствии надо будет заменить на d/2. Завершая доказательство так, как это было сделано выше, мы приве­дем уравнение (6.19) к виду



Это то же уравнение, что и (6.16). Надо только заменить qd на р и вставить потерянный по дороге множитель 1/4pe0. Взглянув на это уравнение по-иному, видим, что дипольный потенциал (6.13) можно толковать как


(6.20)

где Ф0=1/4pe0r — потенциал единичного точечного заряда.

Хотя потенциал данного распределения зарядов всегда мо­жет быть найден при помощи интегрирования, иногда можно сберечь время, применив какой-нибудь хитроумный прием. Например, на помощь часто приходит принцип наложения. Если нам дано распределение зарядов, которое можно соста­вить из двух распределений с уже известными потенциалами, то искомый потенциал легко получить, просто сложив уже из­вестные между собой. Наш вывод формулы (6.20) — один из примеров применения этого приема.

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Квантовые миры и возникновение пространства-времени
Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей.Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени.Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались. Популяризаторы постоянно твердят, что квантовая механика – это что-то странное, недоступное для понимания… Чтобы все встало на свои места, достаточно признать, что во Вселенной мы существуем не в одном экземпляре. Шонов Кэрроллов бесконечно много. Как и каждого из нас.Тысячи раз в секунду во Вселенной возникают все новые и новые наши копии. Каждый раз, когда происходит квантовое событие, мир дублируется, создавая копию, в которой квантовое событие так и не произошло.В квантовой механике нет ничего мистического или необъяснимого. Это просто физика.В формате PDF A4 сохранён издательский дизайн.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Физика / Зарубежная образовательная литература / Образование и наука