Читаем Анаксимандр и рождение науки полностью

В течение последнего столетия велась оживленная дискуссия о природе научного познания. Работы таких философов науки, как Карнап и Башляр, Поппер и Кун, Фейерабенд, Лакатос, Куайн, ван Фраассен и многих других, изменили наше представление о том, что составляет научную деятельность. В определенной степени это переосмысление стало реакцией на шок: неожиданный крах ньютоновской физики в начале двадцатого века.

В девятнадцатом веке часто шутили, что Исаак Ньютон был не только одним из самых умных людей в истории человечества, но и самым удачливым, поскольку существует только один набор фундаментальных законов природы, и именно Ньютону посчастливилось их открыть. Сегодня мы не можем не улыбнуться, читая об этом, поскольку подобное представление обнаруживает серьезную эпистемологическую ошибку мыслителей девятнадцатого века, а именно идею о том, будто бы хорошие научные теории являются окончательными и сохраняют свою силу до конца времен.

Двадцатый век развеял эту иллюзию. Высокоточные эксперименты показали, что в очень строгом смысле теория Ньютона ошибочна. Например, планета Меркурий движется не по ньютоновским законам. Альберт Эйнштейн, Вернер Гейзенберг и их коллеги открыли новый набор фундаментальных законов – общую теорию относительности и квантовую механику, которые заменили законы Ньютона и исправно работают в тех областях, где теория Ньютона дает сбой: например, они позволяют точно рассчитать орбиту Меркурия или поведение электронов в атомах.

Обжегшись на молоке, дуют и на воду: сегодня мало кто верит, что мы располагаем окончательными научными законами. Принято считать, что когда-нибудь и законы Эйнштейна и Гейзенберга продемонстрируют свою ограниченность и будут заменены более совершенными[42]. На самом деле границы теорий Эйнштейна и Гейзенберга уже проявляются. Между теориями Эйнштейна и Гейзенберга существуют тонкие противоречия, которые не позволяют нам утверждать, что мы выявили окончательные, не подлежащие сомнению законы Вселенной. Поэтому исследования продолжаются. Моя собственная работа в области теоретической физики как раз и направлена на поиск законов, которые могли бы объединить эти две теории.

Итак, существенный момент здесь в том, что теории Эйнштейна и Гейзенберга не являются мелкими поправками к теории Ньютона. Различия выходят далеко за рамки корректировки уравнений, наведения порядка, добавления или замены формул. Скорее, эти новые теории представляют собой радикальное переосмысление мира. Ньютон видел мир как необъятное пустое пространство, по которому «частицы» перемещаются подобно камешкам. Но Эйнштейн понимал, что такое якобы пустое пространство на самом деле является своего рода морем, охваченным штормом. Оно может сворачиваться, искривляться и даже (когда речь идет о черных дырах) уничтожаться. До этого никто всерьез не задумывался о такой возможности[43]. Гейзенберг, в свою очередь, понимал, что ньютоновские «частицы» – это вовсе не частицы, а причудливые гибриды частиц и волн, бегающие по сетям, образуемым силовыми линиями Фарадея. Короче говоря, по ходу двадцатого века выяснилось, что мир существенно отличается от того, каким его представлял себе Ньютон.

С одной стороны, эти открытия подтвердили познавательную силу науки. Как и теории Ньютона и Максвелла в свое время, эти открытия вскоре привели к поразительному уровню развития новых технологий, которые в очередной раз радикально изменили человеческое общество. Прозрения Фарадея и Максвелла позволили создать радио и коммуникационные технологии. Открытия Эйнштейна и Гейзенберга поспособствовали появлению компьютеров, информационных технологий, атомной энергии и других бесчисленных технологических достижений, изменивших нашу жизнь.

Но, с другой стороны, осознание того, что ньютоновская картина мира была ложной, приводит в замешательство. После Ньютона мы думали, что раз и навсегда поняли базовое строение физического мира и принцип его работы. Мы ошибались. Теории Эйнштейна и Гейзенберга тоже однажды, вероятно, будут опровергнуты. Значит ли это, что понимание мира, которое предлагает наука, не может быть достоверным, даже когда дело касается науки в лучшем ее проявлении? Что же мы действительно знаем о мире? Что наука сообщает нам о мире?

Наука не сводится к верифицируемым предсказаниям

Конечно, несмотря на всю вышеописанную неопределенность, в науке можно найти достоверность. Теория Ньютона не стала менее ценной после Эйнштейна. Тот, кому нужно рассчитать силу ветра на мосту, вполне может воспользоваться как теорией Ньютона, так и теорией Эйнштейна. Разница в результатах будет чрезвычайно мала и совершенно незначительна для решения практической задачи, например, для того, чтобы построить мост, который не рухнет. Таким образом, теория Ньютона в полной мере отвечает этой задаче и дает надежные результаты (и гораздо более простые в применении).

Перейти на страницу:

Похожие книги

Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература