По твёрдому убеждению автора этих строк, именно такие соответствия, в которых каждому элементу области отправления либо соответствует ровно один элемент области прибытия, либо не соответствует ничего, и должны именоваться
В приведённых выше примерах соответствий лишь пример 3 даёт функцию (если считать, что у каждого нелысого человека вполне определённый цвет волос).
Отношение
Последним из начальных понятий нашего списка является понятие отношения. Начнём с примеров. Говорят об отношении родства среди людей, об отношении 'меньше' среди чисел, об отношении старшинства среди военнослужащих, об отношении синонимии среди слов в лексике, об отношении паразитирования среди животных, об отношении совместимости среди групп крови, об отношении подобия среди геометрических фигур, об отношении согласования и отношении подчинения среди слов в предложении.
Мы видим, что каждый из этих примеров устроен следующим образом: имеется некоторое множество (людей, слов, фигур и т. д.), и для любой пары элементов из этого множества указано, находится ли первый член этой пары в данном отношении ко второму или нет. (Например, для каждой пары военнослужащих указано, является ли первый из них старшим по отношению ко второму. Для каждой пары чисел указано, является ли первое из них меньшим, чем второе.) Причём из рассмотрения не исключаются пары, у которых первый и второй члены совпадают. (Так, для любой пары, составленной из совпадающих чисел, указано, что первый член пары не находится в отношении 'меньше' ко второму. Для любой пары, составленной из совпадающих геометрических фигур, указано, что первый член находится в отношении подобия ко второму.)
Чтобы задать отношение, достаточно, следовательно, задать некоторое исходное множество пар его элементов – «график отношения», состоящий из тех пар, у которых первый член находится в рассматриваемом отношении ко второму. Естественно поэтому само отношение отождествить с парой, составленной из его графика и его области задания. Такое отождествление и принято нами в качестве определения понятия 'отношение'. Отношение, следовательно, есть пара, составленная из двух множеств, причём элементами первого из этих множеств служат некоторые пары элементов второго.
Для простоты мы ограничились здесь
Из книги «Что такое аксиоматический метод?»
§ 1. Что такое аксиомы?
Аксиоматический метод – это такой способ построения какой-либо математической теории, при котором в основу теории кладутся некоторые исходные положения, называемые
Начнём с аксиом. Возникают естественные вопросы: что такое аксиомы, откуда они взялись, зачем они нужны? Чтобы ответить на них, нам придётся выйти за пределы чистой математики и вступить в области, пограничные между математикой и философией.
В естественных науках многие факты обосновываются экспериментально, т. е. посредством проведения эксперимента (