Но причины есть. Одна из них заключается в том, что разные нейромедиаторы дают разную длительность и степень деполяризации, т. е. обеспечивают возбуждение разной силы и продолжительности. А значит, появляется возможность усложнить проходящую от нейрона к нейрону информацию.
Вторая причина сразу удвоит поле обзора: есть нейромедиаторы, которые не деполяризуют шипики и не увеличивают вероятность появления потенциала действия в следующем нейроне, а делают все наоборот. Они как раз гиперполяризуют дендритный шипик, открывая для этого другие типы каналов и еще больше сдвигая потенциал покоя в отрицательную сторону (от –70 к –80 мВ). Перед нами т. н. тормозные нейромедиаторы или
Таким образом, у нас есть множество классов нейромедиаторов, и каждый связывается со своим рецептором с подходящей конфигурацией[536]
. И что – в любом окончании аксона сидят все эти нейромедиаторы и потенциал действия выводит в синапс полный их ассортимент? А теперь самое время познакомиться с принципом Дейла, названным по имени его первооткрывателя Генри Дейла, великого многостаночника нейробиологии. Этот принцип, предложенный в 1930-х гг., оказался настолько верен[537], что до сих пор обеспечивает каждому нейробиологу чувство глубокой внутренней правоты. Вот этот принцип: в каждом аксонном окончании нейрона потенциал действия высвобождает в синаптическое пространство один и тот же тип нейромедиатора. Поэтому у каждого нейрона будет свой характерный нейрохимический профиль. «Данный нейрон является нейроном с нейромедиатором типаСейчас известны десятки нейромедиаторов. Некоторые из них хорошо нам знакомы – это серотонин, норадреналин, дофамин, ацетилхолин, глутамат (самый частый возбуждающий нейромедиатор в мозге) и ГАМК (самый частый тормозный). Для студентов-медиков данная тема – настоящая пытка, им приходится выучивать все ступени синтеза[539]
этих нейромедиаторов: и предшественников, и последовательность промежуточных форм, через которые проходит молекула-предшественник, пока не дойдет до финальной рабочей молекулы, да еще безобразно длинные названия ферментов, катализирующих этапы синтеза. Но все же есть некоторые относительно простые правила, построенные на трех положениях:а) Если бежишь со всех ног от тигра, то малоприятно, когда нейроны вдруг перестают передавать сигнал мышцам, потому что – вот ведь незадача! – у них закончился нейромедиатор. Это значит, что нейромедиаторы нужно синтезировать из таких предшественников, которых в организме много; зачастую ими являются простые компоненты пищи. Например, серотонин и дофамин производятся из пищевых аминокислот – триптофана и тирозина соответственно. А ацетилхолин – из холина и лецитина.
б) Нейрон может производить в секунду десятки потенциалов действия. При каждом нужно заново заполнить пузырьки нейромедиатором, потом запустить его в синаптическую щель, а затем забрать обратно внутрь аксонного окончания. Поэтому хотелось бы, чтобы молекула нейромедиатора не была огромной, слишком сложной и с затейливыми финтифлюшками, для которых потребовались бы специальные бригады строителей. Такие молекулы, наоборот, должны синтезироваться из предшественников на раз-два, за несколько шагов. Им следует быть дешевыми и простыми в исполнении. Так, синтез дофамина из тирозина идет всего в два несложных этапа.
в) И наконец – для пущей простоты и дешевизны – синтез многих нейромедиаторов начинается с одного и того же предшественника. Так, для синтеза дофамина дофаминергические нейроны имеют два фермента, по одному на каждый этап. А в нейронах, выделяющих норадреналин, вдобавок к этим двум есть еще один фермент, он превращает дофамин в норадреналин.
Все ради удешевления. И в этом есть смысл. Ведь ничто не выходит из употребления быстрее, чем нейромедиатор, выполнивший свою постсинаптическую работу. Так вчерашняя газета годится разве что на подстилки для еще необученных щенят.
Нейрофармакология
Когда возникло понимание работы нейромедиаторов, ученые занялись вопросами, как именно действуют «нейроактивные» и «психоактивные» препараты.