Читаем Биология. В 3-х томах. Т. 2 полностью

У водных полихет (например, у Nereis sp.) на каждом сегменте тела имеется по две параподии (см. рис. 4.26). Это подвижные выросты стенки тела, пронизанные многочисленными сосудами; благодаря им площадь дыхательной поверхности животного увеличивается. Диффузия газов ускоряется благодаря тому, что кровь в этих сосудах проходит совсем близко от поверхности тела.

11.6.6. Членистоногие

С системой, обеспечивающей газообмен у членистоногих, можно ознакомиться на примере насекомых. Газообмен осуществляется здесь через систему трубочек — так называемых трахей. Благодаря этому кислород из воздуха поступает прямо к тканям, и необходимость в его транспортировке кровью отпадает. Это гораздо более быстрый способ, нежели диффузия растворенного кислорода сквозь ткани; такой газообмен создает условия для высокой интенсивности метаболизма.

Дыхальца — парные отверстия, имеющиеся на втором и третьем грудном и на первых восьми брюшных сегментах тела насекомого, ведут в воздушные полости. От этих полостей отходят разветвленные трубочки, называемые трахеями (рис. 11.23). Каждая трахея выстлана плоским эпителием, секретирующим тонкий слой хитинового материала. Обычно этот жесткий слой дополнительно укреплен спиральными и кольцевыми утолщениями, благодаря которым воздухоносные пути остаются открытыми, даже если в просвете трахей давление оказывается отрицательным (сравните с хрящевыми кольцами в трахее и бронхах человека). В каждом сегменте тела трахеи разветвляются на многочисленные более мелкие трубочки, называемые трахеолами; трахеолы тоже ветвятся, пронизывая ткани насекомого, и в наиболее активных тканях, например в летательных мышцах, оканчиваются слепо внутри отдельных клеток. В трахеолах хитиновая выстилка отсутствует; кроме того, степень их ветвления может меняться, приспосабливаясь к метаболическим нуждам ткани.

Рис. 11.23. А. Вертикальный продольный разрез тела прямокрылого. Б. Строение трахеи насекомого


В состоянии покоя трахеолы наполнены водянистой жидкостью (рис. 11.24); в это время кислород диффундирует по ним к тканям (а СО2 — в обратном направлении) со скоростью, вполне достаточной для удовлетворения потребностей насекомого. В активном состоянии усиление метаболической активности мышц ведет к накоплению определенных метаболитов, в частности молочной кислоты, и в тканях соответственно повышается осмотическое давление. Когда это происходит, жидкость из трахеол под действием осмотических сил частично всасывается в ткани и в трахеолы поступает больше воздуха, а значит, и больше кислорода, причем этот кислород подается непосредственно к тканям как раз тогда, когда они в нем нуждаются.

Рис. 11.24. Условия, создающиеся в тканях насекомого в покое и в активном состоянии (работа трахеол)


Общий поток воздуха, проходящий через тело насекомого, регулируется механизмом, закрывающим дыхальца. Отверстие каждого дыхальца снабжено системой клапанов, управляемых очень мелкими мышцами. Края этого отверстия покрыты волосками, которые предотвращают попадание в дыхальце чужеродных частиц и излишнюю потерю влаги. Величина отверстия регулируется в зависимости от количества СО2 в теле насекомого.

Усиленная активность ведет к усиленному образованию СО2. Хеморецепторы улавливают это, и дыхальца открываются. Тот же стимул может вызывать и вентиляционные движения тела, особенно у крупных насекомых. Дорсовентральные мышцы, сокращаясь, делают тело насекомого более плоским, вследствие чего объем трахейной системы уменьшается и воздух выталкивается из нее наружу ("выдох"). Всасывание воздуха ("вдох") происходит пассивно, когда сегменты тела благодаря своей эластичности принимают исходную форму.

Судя по некоторым данным, грудные и брюшные дыхальца открываются и закрываются попеременно, и это в сочетании с вентиляционными движениями тела создает однонаправленный поток воздуха, который входит в тело насекомого через грудной его отдел и выходит через брюшной.

Трахейная система, безусловно, весьма эффективна в смысле газообмена, однако следует учитывать, что газообмен определяется здесь исключительно диффузией газообразного кислорода через ткани насекомого. Диффузия же, как известно, эффективна только на малых расстояниях, и это накладывает жесткие ограничения на размеры, которых могут достигать насекомые. Эти малые расстояния, на которых диффузия достаточно эффективна, не превышают 1 см; поэтому хотя и встречаются насекомые длиной до 16 см, их тело не должно при этом иметь в толщину более 2 см!

11.6.7. Рыбы

Хрящевые рыбы (например, акулы)

Перейти на страницу:

Похожие книги

Развитие эволюционных идей в биологии
Развитие эволюционных идей в биологии

Книга известного биолога-эволюциониста, зоолога и эколога Н. Н. Воронцова представляет собой переработанный и расширенный курс теории эволюции, который автор читает на кафедре биофизики физфака МГУ.В книге подробно прослежено развитие эволюционной идеи, возникшей за тысячи лет до Дарвина и принадлежащей к числу немногих общенаучных фундаментальных идей, определивших мышление юнца XIX и XX столетия. Проанализированы все этапы зарождения и формирования представлений об эволюции, начиная с первобытного общества. Особое внимание уделено истокам, развитию и восприятию дарвинизма, в частности, в России, влиянию дарвинизма на все естествознание.Последние главы показывают, как сегодняшние открытия в области молекулярной биологии, генетики и многих других дисциплин готовят почву для нового синтеза в истории эволюционизма.Книга насыщена массой интересных и поучительных исторических подробностей, как правило, малоизвестных, и содержит большое число иллюстраций, как авторских, так и взятых из труднодоступных изданий. Книга рассчитана на широкого читателя, не только биолога, но любого, интересующегося современной наукой ее историей.

Николай Николаевич Воронцов

Биология, биофизика, биохимия