Значение этого фрагмента можно легко упустить из вида, если забыть о том, что Уиттекер был еще и физиком, страстно верившим в эфир, то есть среду или механизм распространения электромагнитной энергии. Ведь именно он написал классическую историю концепции эфира. Обратите также внимание: эта статья была первоначально опубликована в Германии, и, следовательно, немцы едва ли могли не знать о ее существовании или о ее важности как явления нерелятивистской физики, тем более что они пытались объяснить странные аномалии катушки Колера и результаты своих экспериментов с радаром в конце войны. Действительно, их эксперименты с радаром и даже сам «Колокол» являются свидетельством того, что они упорно занимались скалярной физикой.
Для того чтобы понять, что Бирден подразумевает под скалярными волнами в среде или вакууме, мы должны узнать, с какого момента ортодоксальная физика пошла в неверном направлении. По мнению Бирдена, это произошло после Максвелла. Максвелл первым сформулировал свои уравнения на математическом языке, почти вымершем на сегодняшний день, который называется «геометрия кватернионов». Этот математический язык существенно отличается от стандартных линейной алгебры, тензорного исчисления и векторного анализа, на языке которых обычно излагается в учебниках и на лекциях стандартная электромагнитная теория. Другими словами, то, что сегодня изучают в учебниках и курсах физики как уравнения Максвелла, на самом деле не являются оригинальными уравнениями Максвелла! Это
Во-первых, существуют два типа воздействия, которое электромагнитные поля могут оказывать на заряженные частицы: (1) смещение и (2) напряжение. Существуют два типа смещения, или движения. Первый тип — простое смещение по прямой линии, порождающее электрическое поле, или поле «Е». Второй тип — движение по спирали, порождающее поле, математически обозначаемое как поле «В». Пока мы не будем касаться последнего.
Теперь предположим, что имеются два вектора, Е
1и Е 2, воздействующие на частицу, как показано на диаграмме:В результате происходит смещение в направлении вектора Е
3, так как два вектора складываются и дают в сумме то, что называется «результирующим» вектором. Таким образом, в системах, где действует много векторов смещения, «вся система может быть заменена одним-единственным вектором», результирующим вектором, который описывает реальное смещение, происходящее под воздействием первоначальных векторов [335].Теперь заметьте, что если смещения не происходит, результирующий вектор является нулевым вектором. Однако всегда следует помнить, что мы имеем дело с геометрией, а не просто с математикой или числами. Следовательно, можно предусмотреть множество мультивекторных систем, имеющих нулевой вектор смещения, которые, тем не менее, обладают самыми различными внутренними напряжениями и геометрией:
Если мыслить исключительно категориями условностей линейной алгебры и, соответственно, заменять мультивекторные системы результирующим вектором, то каждая из трех систем, изображенных на приведенной выше диаграмме, будет заменена
Теперь мы в состоянии понять, что такое скаляр и почему Максвелл намеренно выбрал геометрию кватернионов для записи своих уравнений: ибо он думал при этом именно о типах ситуаций физического напряжения, которые изображаются вихрями на приведенной выше диаграмме.
В стандартной линейной алгебре каждая стрелка системы математически была бы представлена следующим образом:
v = ai + bj +ck
Таким образом, если общая сумма всех таких векторов не дает смещения, все подобные математические выражения заменяются нулевым вектором. Но, как мы уже видели, каждая система содержит внутреннее вращение или напряжение, стало быть, что-то остается. Возникает вопрос: как выразить это математически?
Кватернион — это скаляр плюс вектор, а скаляр — это чистая величина, число, которое не имеет направления. Он просто есть. Таким образом, кватернион (q) — это скаляр (s) плюс вектор (v):
q = s + v
Вставив в эту формулу наше предыдущее выражение для вектора, получаем:
q = s + ai + bj + ck