Читаем Дело сердца полностью

Пока Эйнтховен готовил результаты своих первых опытов к публикации, загадка о том, что заставляет сердце биться, была наконец-то разгадана. Десятью годами ранее швейцарский кардиолог Вильгельм Хиз обнаружил прежде никем не замеченный пучок мышечных волокон, исходящих из перегородки, которая разделяет сердце на две части. Он понял, что эта ткань была предназначена для передачи электрических импульсов от правого предсердия к двум желудочкам с целью вызвать их сокращение – это было первое вещественное доказательство наличия внутри сердца проводящего контура. К 1906 году обнаружили уже целый ряд подобных волокон, однако источник электрических сигналов так и не определили. Найден он был только летом 1906 года студентом-медиком в совершенно неожиданном месте – на ферме в графстве Кент. Мартин Флэк, сын местного мясника, помогал анатому Артуру Кейту проводить исследования в импровизированной лаборатории в его гостиной. Пока Кейт вместе с женой катался на велосипеде, Флэк разрезал сердце крота и обнаружил там «удивительную структуру» в верхней части правого предсердия.

Крошечный пучок нервных волокон, который Флэк увидел в свой микроскоп, не представлял собой ничего особенного, однако он оказался тем самым последним кусочком пазла, над которым величайшие ученые умы ломали голову не одно столетие. Эта «удивительная структура» представляла собой синусовый узел, природный мотор сердца – именно в нем и рождались заставлявшие его биться электрические сигналы. Раз в секунду или чаще синусовый узел посылает электрический импульс, который распространяется по сердечной мышце, вызывая сокращение желудочка. Долю секунды спустя электрический сигнал достигает похожего пучка, расположенного в стенке между двумя половинами сердца – предсердно-желудочковый узел, – который, в свою очередь, посылает импульс, заставляющий желудочки сокращаться, выбрасывая находящуюся в них кровь.

Синусовый узел – это дирижер, благодаря которому все мышечные волокна сокращаются в такт ударам сердца. Подобно настоящему маэстро он может менять темп в зависимости от обстоятельств: реагируя на сигналы мозга и содержащиеся в крови гормоны, водитель сердечного ритма увеличивает его, если мы занимаемся спортом, например, и снижает, когда потребность тела в кислороде снова снижается[19]. Сеть электрических соединений, отвечающая за сердцебиение, очень сложная – настолько сложная, что до сих пор до конца не изучена. Из-за болезни или возраста может случиться размыкание проводящих путей или могут появиться новые, аномальные соединения, из-за чего электрический сигнал нарушается и возникает аритмия – сбой сердечного ритма. Возникающие при этом напряжения – крошечные, и измеряются они в милливольтах, однако эта микроскопическая электрическая система очень точно регулирует ритм сердца. Открытие механизма управления работой сердца стало важнейшим прорывом, который помог врачам понять природу всевозможных сбоев, случающихся в ней. Однако пройдет еще немало лет, прежде чем медики на основе этих знаний разработают эффективный способ лечения.

Австралиец Марк Лидвил, один из врачей-первопроходцев, больше, впрочем, известный в качестве рыболова, чуть ли не единственного в мире поймавшего огромную редкую рыбу. Восьмого февраля 1913 года он выловил черного марлина – крупную морскую рыбу, способную развивать в воде скорость до 130 км/ч и чрезвычайно ценимую рыбаками-любителями. Пойманный им в тот день в водах Порт-Стивена 32-килограммовый экземпляр был подарен Австралийскому музею – и по сей день там можно увидеть скелет этой чудо-рыбы. Улов этот сумел затмить наркозный аппарат, изобретенный им же в тот же год и использующийся в большинстве австралийских больниц. Впрочем, и созданный Лидвилом пятнадцать лет спустя первый в мире искусственный водитель сердечного ритма (электрокардиостимулятор) тоже не сумел выйти из тени его рыболовного триумфа.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже