По мнению автора, большинство из подобных попыток оказываются неосознанными, хотя, несмотря на засилье глобальной синагоги, делаются и вполне осмысленные призывы, но, к сожалению, не шаги в данном направлении. Например, нобелевский лауреат Е. Вигнер задаётся недвусмысленным вопросом о том, а
Речь идёт, разумеется, о тензооктанионах, и автор со всей ответственность заявляет, что их использование является выходом из тех тупиков, в которые оказалась загнанной современная наука. Но, сколь не была бы гениальной догадка Е. Вигнера, вовсе неудивительно, что он ограничился здесь исключительно благими пожеланиями.
По-человечески такое понятно. Да и мировая закулиса, видимо, ему очень наглядно объяснила, что создание теории функций гиперкомплексного переменного представляет собой вещь тяжёлую, длительную и финансово затратную.
К тому же, богатство, как показывает человеческая история, сегодня по воле глобальной синагоги у человека есть, а завтра уже его и нет. И потому, лучше всё-таки быть человеком богатым или относительно богатым в комфортабельных условиях, чем работать дворником в лесу или посудомойщиком в забегаловке.
ФМ2. Электромагнетизм в алгебре тензооктанионов
Настоящий параграф посвящён уравнениям Максвелла и вытекающим из них следствиям. В алгебре тензооктанионов уравнения Максвелла оказываются всего лишь развёрнутой записью формы Леви волновой функции.
Исходные положение и выводы на их основе.
Изложение разумно начать с определения объектов, с которыми работает теория электромагнетизма. Конечно же, они имеют свои аналоги в современной науке.(ФМ2.1)
Подобно современной электродинамике, временная контравариантная компонента функции кармы
(ФМ2.2)
Второе выражение цепочки преобразований (ФМ2.2) получается из первого выражения цепочки преобразований (ФМ2.2) после использования первой формулы блока формул (ФМ1.21). Нужно также воспользоваться формулой (ФМ2.1).
Опираясь на формулу (ФМ1.2), от второго выражения цепочки преобразований (ФМ2.2) приходим к третьему выражению цепочки преобразований (ФМ1.2). Четвёртое выражение цепочки преобразований (ФМ2.2) получается из третьего выражения цепочки преобразований (ФМ2.2) при трансформации его слагаемых.
При трансформации первого слагаемого третьего выражения цепочки преобразований (ФМ2.2) использовалась третья формула блока формул (ФМ1.3), и потому его знак совпадает со знаком первого слагаемого четвёртого выражения цепочки преобразований (ФМ2.2). Второе слагаемое третьего выражения цепочки преобразований (ФМ2.2) преобразовывалось при помощи формулы третьей формулы блока формул (ФМ1.4), и его знак оказывается противоположным знаку второго слагаемого четвёртого выражения цепочки преобразований (ФМ2.2) меняется.