Главное достижение Декарта – построение аналитической геометрии (термин предложил И. Ньютон, см. Геометрия), в которой геометрические задачи переводились на язык алгебры при помощи метода координат. Нужно отметить, что у Декарта в точном виде еще не было того, что сегодня называется декартовой системой координат. Декарт начал с того, что перевел на алгебраический язык задачи на построение циркулем и линейкой (см. Геометрические построения), затем обнаружил, что любимые древними конические сечения – это то же самое, что кривые второго порядка, т.е. с алгебраической точки зрения следующий по сложности за прямыми (кривыми первого порядка) класс кривых. При переходе на алгебраический язык многие трудные геометрические задачи становятся почти тривиальными.
Немалой заслугой Декарта было введение удобных обозначений, сохранившихся до наших дней: латинских букв x,y,z – для неизвестных; a,b,c – для коэффициентов, x2
, y5, a7 – для степеней.Он сформулировал основную теорему алгебры: «число корней алгебраического уравнения равно его степени», доказательство которой было получено лишь в конце XVIII в. К. Ф. Гауссом.
Интересы Декарта не ограничиваются математикой, а включают механику, оптику, биологию.
В 1649 г. Декарт после долгих колебаний переезжает в Швецию. Это решение оказалось для его здоровья роковым. Через полгода Декарт умер от пневмонии.
------------------------------------------
КОСИНУСОВ ТЕОРЕМА
Косинусов теорема – теорема тригонометрии, выражающая зависимость между сторонами и углами треугольника. Она утверждает, что во всяком треугольнике квадрат длины стороны равен сумме квадратов длин двух других сторон без удвоенного произведения длин этих сторон на косинус угла между ними, т.е. в треугольнике ABC (см. рис.) имеет место соотношение
c2
=a2+b2-2abcosC,где a,b,c – длины сторон треугольника, а C – величина угла, противолежащего стороне c. Если угол C прямой, то теорема косинусов переходит в Пифагора теорему, так как косинус прямого угла равен нулю. Теорема косинусов чаще всего применяется в двух случаях: 1) если нужно узнать длину одной из сторон при известных длинах двух других сторон и величине угла между ними; 2) если нужно узнать величины углов треугольника, длины сторон которого известны.
Теорему знали еще древние греки, ее доказательство содержится во II книге «Начал» Евклида (см. Евклид и его «Начала»).
КУБ
Куб, или гексаэдр (шестигранник), - прямоугольный параллелепипед с равными измерениями, один из видов правильных многогранников. Ею легко склеить из развертки (рис. 1). Куб – единственный из правильных многогранников, которым можно замостить пространство, прикладывая один кубик к другому. Именно поэтому объем куба с единичным ребром принят за единицу объема. Удивительным образом куб связан с четырьмя другими видами правильных многогранников. Так, центры граней куба являются вершинами октаэдра и, наоборот, центры граней октаэдра суть вершины куба (рис. 2).
Рис. 1
Рис. 2
В куб можно вписать правильный тетраэдр – его вершинами являются концы скрещивающихся диагоналей двух параллельных граней куба (рис. 3). Остальные четыре вершины куба служат вершинами второго вписанного тетраэдра.
Рис. 3
Куб можно вписать в додекаэдр так, что ребра куба будут диагоналями граней додекаэдра (рис. 4). Ребром вписанного в додекаэдр куба может быть любая из пяти диагоналей какой-нибудь грани додекаэдра, так что в додекаэдр указанным образом можно вписать 5 одинаковых кубов. Наконец, на каждой из шести граней куба можно выбрать по паре точек так, что 12 выбранных точек будут вершинами икосаэдра, рис. 5 (выделенные отрезки лежат на гранях куба).
Рис. 4
Рис. 5
Среди прочих примечательных свойств куба отметим, что в точности четыре его сечения являются правильными шестиугольниками – эти сечения проходят через центр куба перпендикулярно четырем его диагоналям (рис. 6).
Рис. 6
Куб – пространственный аналог квадрата на плоскости. Особую четкость эта аналогия приобретает, если привлечь координаты. Квадрат на плоскости Oxy можно задать неравенствами
0≤x≤1, 0≤y≤1,
и его вершины будут иметь координаты (0;0), (0;1), (1;0) и (1;1). В координатном пространстве Oxyz куб задается неравенствами
0≤x≤1, 0≤y≤1, 0≤z≤1;
его 8 вершин имеют координаты (0;0;0), (0;0;1), (0;1;0), (0;1;1), (1;0;0), (1;0;1), (1;1;0) и (1;1;1). Квадрат имеет 4 стороны, лежащие на прямых x=0, y=0, x=1 и y=1. Куб имеет 6 (плоских, или двумерных) граней, лежащих в плоскостях, задаваемых уравнениями x=0, y=0, z=0, x=1, y=1 и z=1. Эту аналогию можно продолжить в две стороны.
Одномерный аналог куба и квадрата – это, конечно, отрезок 0≤x≤1 оси Ox. Четырехмерный же куб в четырехмерном пространстве, точки которого понимают как всевозможные (упорядоченные) четверки чисел (x;y;z;t), задается системой неравенств
0≤x≤1, 0≤y≤1, 0≤z≤1, 0≤t≤1.