Читаем Энциклопедический словарь юного математика полностью

В пространстве уравнение Ax + By + Cz + D = 0 описывает плоскость, если не все коэффициенты A,B и C равны нулю. Аналогично вектор {A,B,C} перпендикулярен этой плоскости. Отсюда получаем условия параллельности двух плоскостей A1x + B1y + C1z + D1 = 0 и A2x + B2y + C2z + D2 = 0:

и условие их перпендикулярности: A1A2 + B1B2 + C1C2 = 0.

Прямая в пространстве может быть представлена как линия пересечения двух плоскостей и, следовательно, может описываться парой уравнений плоскостей, и, наоборот, точки, удовлетворяющие одновременно двум уравнениям:

,

лежат на прямой, если коэффициенты при неизвестных не пропорциональны, т.е. эти плоскости не параллельны.

Существует и другой способ описания прямой в декартовых координатах. Для этого выбираются точка M0(x0,y0,z0), лежащая на этой прямой, и вектор , параллельный данной прямой (он называется направляющим вектором прямой). Тогда все точки этой прямой удовлетворяют соотношениям:

Каждому значению числа t (оно называется параметром, а поэтому и запись называется параметрическим заданием прямой) соответствует некоторая точка этой прямой. Если вектор  имеет единичную длину, то модуль числа t равняется расстоянию соответствующей точки до начальной точки M0.

В соответствии с геометрическим смыслом чисел α, β и γ и здесь можно аналогично написать алгебраические условия перпендикулярности и условия параллельности прямых через координаты их направляющих векторов.

Трудно переоценить значение декартовой системы координат в развитии математики и ее приложений.

Кривые и поверхности, определяемые ранее геометрически, получили описание в виде формул. Более того, рассматривая различные уравнения и изображая соответствующие линии и поверхности, математики получили новые геометрические образы, оказавшиеся очень полезными в приложениях, например гиперболические функции.

Существуют на плоскости и другие системы координат, например полярная система координат. Чтобы ее ввести, выбирают начальную точку O, называемую полюсом, поэтому система и называется полярной. Из этой точки проводят луч, называющийся полярной осью. Чтобы определить координаты точки на плоскости, ее соединяют отрезком с полюсом и вычисляют длину этого отрезка и угол между ним и полярной осью (рис. 4).

Рис. 4

Таким образом, каждой точке M плоскости сопоставляется пара чисел (ρ, φ). Но если в декартовой системе координат эта пара определялась однозначно, то в полярной системе число φ определено уже неоднозначно: парам чисел (ρ, φ+2nπ) соответствует одна и та же точка при любом целом числе n. Направление полярной оси можно выбирать произвольно. Так, географы предпочитают направление полярной оси на север и соответствующий полярный угол называют азимутом, а артиллеристы отсчитывают азимут от направления на юг.

Существуют также координаты, задаваемые одним числом. Это координаты на прямой. Достаточно задать одно число – расстояние от точки до начала отсчета, чтобы указать на прямой положение этой точки.

А сколько координат зададут положение точки в пространстве? Естественно, три. Эти три числа можно получить, например, так. Соединим мысленно лучом центр Земли и нашу точку и рассмотрим широту и долготу пересечения луча с поверхностью Земли и расстояние от точки до центра Земли. Такая система координат называется сферической. Можно поступить по-другому. Выберем некоторую плоскость и введем на ней полярную систему координат, а нашей точке сопоставим полярные координаты ее проекции на эту плоскость и расстояние от нее до плоскости, взятое со знаком «плюс» для одной половины пространства и со знаком «минус» - для другой; так мы получим цилиндрическую систему координат.

Сферической системой координат обычно пользуются на аэродромах. Рядом с аэродромом ставят радиолокатор. Этот прибор определяет расстояние до самолета, угол, под которым самолет виден над горизонтом, и угол между направлением на самолет и направлением на север, т. е. определяет его сферические координаты.


РЕНЕ ДЕКАРТ

(1596-1650)

Декарт далеко не сразу нашел свое место в жизни. Дворянин по происхождению, окончив коллеж в Лa-Флеше, он с головой окунается в светскую жизнь Парижа, затем бросает все ради занятий наукой.

Декарт неторопливо продумывает контуры своего будущего учения – аналитического метода познания мира. Он накапливает жизненный опыт, несколько лет проводит в путешествиях. Декарт стремился и в философии и в любой другой науке найти математические законы, свести каждый вопрос или каждую задачу к математической. Он хотел создать такой универсальный математический метод, который позволил бы всякому овладевшему им решить любую задачу. В 1637 г. в Лейдене выходит 4 тома его «Философских опытов». Последний том назывался «Геометрия».

Декарт отводил математике особое место в своей системе, он считал ее принципы установления истины образцом для других наук.

Перейти на страницу:

Похожие книги