Если два угла одного треугольника соответственно равны двум углам другого треугольника, то в евклидовой геометрии равны и третьи углы (такие треугольники подобны). В геометрии Лобачевского не существует подобных треугольников. Более того, в геометрии Лобачевского имеет место четвертый признак равенства треугольников: если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.
Разность между 180° и суммой углов треугольника ABC в геометрии Лобачевского положительна; она называется дефектом этого треугольника. Оказывается, что в этой геометрии площадь треугольника замечательным образом связана с его дефектом:
Пусть теперь AOB – некоторый острый угол (рис. 5). В геометрии Лобачевского можно выбрать такую точку M на стороне
Рис. 5
Рис. 6
На рис. 7 перпендикуляр
Рис. 7
На рис. 8 изображен интересный вариант расположения трех прямых на плоскости Лобачевского: каждые две из них параллельны (только в разных направлениях). А на рис. 9 все прямые параллельны друг другу в одном направлении (пучок параллельных прямых). Красная линия на рис. 9 «перпендикулярна» всем проведенным прямым (т.е. касательная к этой линии в любой ее точке M перпендикулярна прямой, проходящей через M). Эта линия называется предельной окружностью, или орициклом. Прямые рассмотренного пучка являются как бы ее «радиусами», а «центр» предельной окружности лежит в бесконечности, поскольку «радиусы» параллельны. В то же время предельная окружность не является прямой линией, она «искривлена». И другие свойства, которыми в евклидовой геометрии обладает прямая, в геометрии Лобачевского оказываются присущими другим линиям. Например, множество точек, находящихся по одну сторону от данной прямой на данном расстоянии от нее, в геометрии Лобачевского представляет собой кривую линию (она называется эквидистантой).
Рис. 8
Рис. 9
НИКОЛАЙ ИВАНОВИЧ ЛОБАЧЕВСКИЙ
(1792-1856)
С 14 лет жизнь Н.И.Лобачевского была связана с Казанским университетом. Его студенческие годы приходились на благополучный период в истории университета. Было у кого учиться математике; среди профессоров выделялся М.Ф. Бартельс, сотоварищ первых шагов в математике К. Ф. Гаусса.
С 1814 г. Лобачевский преподает в университете: читает лекции по математике, физике, астрономии, заведует обсерваторией, возглавляет библиотеку. В течение нескольких лет он избирался деканом физико-математического факультета.
С 1827 г. начинается 19-летний период его непрерывного ректорства. Все надо было начинать заново: заниматься строительством, привлекать новых профессоров, менять студенческий режим. На это уходило почти все время.
Еще в первых числах февраля 1826 г. он передал в университет рукопись «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», 11 февраля он выступил с докладом на заседании Совета университета. Собственно, речь шла не о доказательстве пятого постулата Евклида, а о построении геометрии, в которой имеет место его отрицание, т.е. о доказательстве его невыводимости из остальных аксиом. Вероятно, никто из присутствовавших не мог уследить за ходом мысли Лобачевского. Созданная комиссия из членов Совета несколько лет не давала заключения.