Еще одна модель геометрии Лобачевского была предложена французским математиком А. Пуанкаре (1854-1912). Он также рассматривает внутренность некоторого круга K; «прямыми» он считает дуги окружностей, которые в точках пересечения с границей круга K касаются радиусов (рис. 12). Не говоря подробно о «движениях» в модели Пуанкаре (ими будут круговые преобразования, в частности инверсии относительно «прямых», переводящие круг K в себя), ограничимся указанием рис. 13, показывающего, что в этой модели евклидова аксиома параллельности места не имеет. Интересно, что в этой модели окружность (евклидова), расположенная внутри круга K, оказывается «окружностью» и в смысле геометрии Лобачевского; окружность, касающаяся границы Г круга K изображает орицикл, а дуга окружности, пересекающая Г (но не касающаяся радиусов), - эквидистанту. Заметим еще, что в геометрии Лобачевского правильный n-угольник может иметь любой угол при вершине, меньший 180°(1-2/n) (т.е. меньший аналогичного угла в евклидовой геометрии). Поэтому для любого n существует «паркет», представляющий собой замощение плоскости Лобачевского правильными n-угольниками (без пропусков и перекрытий). На рис. 14 приведен такой «паркет», изображенный в модели Пуанкаре (замощение плоскости Лобачевского правильными восьмиугольниками).
Рис. 12
Рис. 13
Рис. 14
Пуанкаре придумал фантастический мир, «жители» которого должны были бы принять геометрию Лобачевского из физических экспериментов. Для этого Пуанкаре предположил, что круг K представляет собой неоднородную оптическую среду, в которой скорость света в точке
Впоследствии были предложены и другие модели геометрии Лобачевского. Этими моделями была окончательно установлена непротиворечивость геометрии Лобачевского. Тем самым было показано, что геометрия Евклида не является единственно возможной. Это оказало большое прогрессивное воздействие на все дальнейшее развитие геометрии и математики в целом.
А в XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики, как одна из возможных геометрий, но и непосредственно связана с приложениями математики к физике. Оказалось, что взаимосвязь пространства и времени, открытая в работах X. Лоренца, А. Пуанкаре, А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского.
ЛОГАРИФМ
Логарифмом числа N по основанию a (обозначается
Логарифм определен для любого положительного числа N при любом отличном от единицы положительном основании a. Каждому положительному числу при данном основании соответствует единственный логарифм.
По определению логарифма справедливо равенство
из которого на основе свойств показательной функции устанавливаются основные свойства логарифмов (здесь
Эти свойства позволяют сводить умножение и деление чисел (представленных в виде степеней некоторого числа, принятого за основание) к сложению и вычитанию показателей степеней, а возведение в степень и извлечение корня – к умножению и делению на показатель степени, поэтому применение логарифмов упрощает выполнение умножения и деления. На этом основан очень популярный прежде счетный прибор логарифмическая линейка, которая сейчас всюду вытесняется микрокалькуляторами.
При нашей десятичной системе счисления самым удобным основанием является число 10. Логарифм по основанию 10 называется десятичным логарифмом и обозначается
При основании, равном 10, только логарифмы целых степеней числа 10 представляются целыми числами
Любое положительное число N всегда можно представить в виде