Читаем Энциклопедический словарь юного математика полностью

Для числа, большего единицы, характеристика на единицу меньше числа цифр у целой части этого числа. Для числа, заключенного между нулем и единицей и записанного десятичной дробью, характеристика отрицательна и равна взятому со знаком минус числу нулей до первой значащей цифры, например для числа 0,0216 его характеристика равна -2.

Десятичные логарифмы используются в практике главным образом в силу исторической традиции. Гораздо более важными в математике и ее приложениях являются натуральные логарифмы, т.е. логарифмы с основанием e. Это число, к которому неограниченно приближаются числа вида (1+1/n)n при неограниченном возрастании числа n. Буквой e это число предложил назвать Л. Эйлер. Важность логарифмической функции с основанием объясняется тем, что в математике используется показательная функция, как правило, с основанием e, а поэтому важна и обратная к ней функция.

Логарифмы были введены шотландским математиком Дж. Непером (1550-1617) и независимо от него швейцарским механиком и математиком И. Бюрги (1552-1632). Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620 г.), и первой в 1614 г. появилась работа Непера «Описание удивительной таблицы логарифмов».

Первые таблицы десятичных логарифмов были составлены изобретательным и остроумным вычислителем, английским математиком Г. Брипсом (1561-1630).

На русском языке первые логарифмические таблицы были изданы в 1703 г.


ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ


Логарифмическая функция по основанию a  (a > 0, a ≠ 1) обозначается y = logax и определяется как функция, обратная показательной функции y = ax с тем же самым основанием. Так как логарифмическая и показательная функции взаимно-обратны, то график логарифмической функции (он иногда называется «логарифмикой») получается из графика показательной функции симметрией относительно биссектрисы первого и третьего координатных углов (рис. 1). Логарифмическая функция определена для положительных x и при основании a, большем единицы, является монотонно возрастающей функцией. Из свойств логарифмов (1) и (2) (см. Логарифм) легко устанавливается, что

log1/a x = -loga x,

откуда следует, что графики функций y = log1/ax и y = logax симметричны друг другу относительно оси Ox. Свойства логарифмической функции хорошо иллюстрирует рис. 2. Заметим, что ординаты любых двух кривых на рис. 2 пропорциональны, это непосредственно следует из формулы

.

Рис. 1

Рис. 2

В математическом анализе особое значение имеет логарифмическая функция по основанию e, она называется натуральным логарифмом и обозначается y = ln x. Производная от этой функции имеет весьма простой вид, а именно (ln x)' = 1/x. На рис. 3 сопоставлены графики y = lg x и y = ln x.

Рис. 3


МАГИЧЕСКИЕ И ЛАТИНСКИЕ КВАДРАТЫ


Если внимательно присмотреться к числам от 1 до 16, расположенным в клетках квадрата на рис. 1, то можно заметить следующую закономерность: сумма чисел в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же. Такой квадрат и все квадраты, обладающие аналогичным свойством, получили название магических.

Рис. 1

Задачи составления и описания магических квадратов интересовали математиков с древнейших времен. Однако полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов 2 × 2 не существует. На рис. 2 изображен единственный магический квадрат 3×3. Единственный в том смысле, что все остальные магические квадраты 3×3 получаются из него либо поворотом вокруг центра, либо отражением относительно одной из его осей симметрии.


2

9

4

7

5

3

6

1

8

Рис. 2

С увеличением размеров (числа клеток) квадрата быстро растет количество возможных магических квадратов. Так, например, различных магических квадратов 4 × 4 уже 880, а для размера 5 × 5 их количество приближается к четверти миллиона. Среди них есть квадраты, обладающие интересными свойствами. Например, в квадрате на рис. 3 равны между собой не только суммы чисел в строках, столбцах и диагоналях, но и суммы пятерок чисел по «разломанным» диагоналям, связанным на рисунке цветными линиями.

Рис. 3

Перейти на страницу:

Похожие книги