Для числа, большего единицы, характеристика на единицу меньше числа цифр у целой части этого числа. Для числа, заключенного между нулем и единицей и записанного десятичной дробью, характеристика отрицательна и равна взятому со знаком минус числу нулей до первой значащей цифры, например для числа 0,0216 его характеристика равна
Десятичные логарифмы используются в практике главным образом в силу исторической традиции. Гораздо более важными в математике и ее приложениях являются натуральные логарифмы, т.е. логарифмы с основанием e. Это число, к которому неограниченно приближаются числа вида
Логарифмы были введены шотландским математиком Дж. Непером (1550-1617) и независимо от него швейцарским механиком и математиком И. Бюрги (1552-1632). Бюрги пришел к логарифмам раньше, но опубликовал свои таблицы с опозданием (в 1620 г.), и первой в 1614 г. появилась работа Непера «Описание удивительной таблицы логарифмов».
Первые таблицы десятичных логарифмов были составлены изобретательным и остроумным вычислителем, английским математиком Г. Брипсом (1561-1630).
На русском языке первые логарифмические таблицы были изданы в 1703 г.
ЛОГАРИФМИЧЕСКАЯ ФУНКЦИЯ
Логарифмическая функция по основанию a
откуда следует, что графики функций
Рис. 1
Рис. 2
В математическом анализе особое значение имеет логарифмическая функция по основанию e, она называется натуральным логарифмом и обозначается
Рис. 3
МАГИЧЕСКИЕ И ЛАТИНСКИЕ КВАДРАТЫ
Если внимательно присмотреться к числам от 1 до 16, расположенным в клетках квадрата на рис. 1, то можно заметить следующую закономерность: сумма чисел в каждом горизонтальном ряду, в каждом вертикальном ряду и по каждой из диагоналей одна и та же. Такой квадрат и все квадраты, обладающие аналогичным свойством, получили название магических.
Рис. 1
Задачи составления и описания магических квадратов интересовали математиков с древнейших времен. Однако полного описания всех возможных магических квадратов не получено и до сего времени. Магических квадратов
2 | 9 | 4 |
7 | 5 | 3 |
6 | 1 | 8 |
Рис. 2
С увеличением размеров (числа клеток) квадрата быстро растет количество возможных магических квадратов. Так, например, различных магических квадратов
Рис. 3