Математический результат обладает тем свойством, что его можно не только применять при изучении какого-то одного определенного явления или процесса, но и использовать для исследования других явлений, физическая природа которых принципиально отлична от ранее рассмотренных. Так, правила арифметики применимы и в задачах экономики, и в технических вопросах, и при решении задач сельского хозяйства, и в научных исследованиях. Арифметические правила были разработаны тысячелетия назад, но прикладную ценность они сохранили на вечные времена. Арифметика представляет собой составную часть математики, ее традиционная часть уже не подвергается творческому развитию в рамках математики, но она находит и будет в дальнейшем находить многочисленные новые применения. Эти применения могут иметь огромное значение для человечества, но вклада собственно в математику они уже не внесут.
Математика, как творческая сила, имеет своей целью разработку общих правил, которыми следует пользоваться в многочисленных частных случаях. Тот, кто создает эти правила, создает новое, творит. Тот, кто применяет уже готовые правила, в самой математике уже не творит, но, вполне возможно, создает с помощью математических правил новые ценности в других областях знания. Например, в наши дни данные дешифровки космических снимков, а также сведения о составе и возрасте горных пород, геохимических и геофизических аномалиях обрабатываются с помощью ЭВМ. Несомненно, что применение ЭВМ в геологических исследованиях оставляет эти исследования геологическими. Принципы же работы ЭВМ и их математическое обеспечение разрабатывались без учета возможности их использования в интересах геологической науки. Сама эта возможность определяется тем, что структурные свойства геологических данных находятся в соответствии с логикой определенных программ работы ЭВМ.
Получили широкое распространение два определения математики. Первое из них было дано Ф. Энгельсом в работе «Анти-Дюринг», другое – группой французских математиков, известной под именем Никола Бурбаки, в статье «Архитектура математики» (1948).
Согласно Ф. Энгельсу, «чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира». Это определение не только описывает объект изучения математики, но и указывает его происхождение – действительный мир. Однако определение Ф. Энгельса в значительной мере отражает состояние математики во второй половине XIX в. и не учитывает те ее новые области, которые непосредственно не связаны ни с количественными отношениями, ни с геометрическими формами. Это, прежде всего, математическая логика и дисциплины, связанные с программированием для ЭВМ. Поэтому определение Ф. Энгельса нуждается в некотором уточнении. Возможно, нужно сказать, что математика имеет своим объектом изучения пространственные формы, количественные отношения и логические конструкции.
Бурбаки утверждают, что «единственными математическими объектами становятся, собственно говоря, математические структуры». Иначе говоря, математику следует определить как науку о математических структурах. Это определение в сущности является тавтологией, поскольку оно утверждает только одно: математика занимается теми объектами, которые она изучает. Другой дефект этого определения состоит в том, что оно не выясняет отношения математики к окружающему нас миру. Более того, Бурбаки подчеркивают, что математические структуры создаются независимо от реального мира и его явлений. Вот почему Бурбаки были вынуждены заявить, что «основная проблема состоит во взаимоотношении мира экспериментального и мира математического. То, что между экспериментальными явлениями и математическими структурами существует тесная связь, - это, как кажется, было совершенно неожиданным образом подтверждено открытиями современной физики, но нам совершенно неизвестны глубокие причины этого... и, быть может, мы их никогда не узнаем».
Из определения Ф. Энгельса не может возникнуть подобного разочаровывающего вывода, поскольку в нем уже содержится утверждение о том, что математические понятия являются абстракциями от некоторых отношений и форм реального мира. Эти понятия берутся из реального мира и с ним связаны. В сущности, именно этим и объясняется поразительная применимость результатов математики к явлениям окружающего нас мира, а вместе с тем и успех процесса математизации знаний. Здесь заслуживает упоминания высказывание В. И. Ленина, помещенное в «Философских тетрадях» и сделанное им в связи с изучением «Науки логики» Гегеля: «Познание есть отражение человеком природы. Но это не простое, не непосредственное, не цельное отражение, а процесс ряда абстракций, формирования, образования понятий, законов etc., каковые понятия, законы etc. (мышление, наука - «логическая идея») и охватывают условно, приблизительно универсальную закономерность вечно движущейся и развивающейся природы».