Среди 23 проблем, поставленных Гильбертом, были как конкретные задачи, так и общие постановки задач, намечавшие пути развития больших направлений в математике. Так, третья проблема, решенная вскоре, ставила вопрос об эквивалентности понятий равновеликости и равносоставленности; десятая проблема была посвящена вопросам разрешимости диофантовых уравнений; в седьмой проблеме спрашивалось, будут ли рациональны числа
Исследования Гильберта оказали большое влияние на развитие многих отраслей математики, его деятельность в Геттингенском университете в значительной мере содействовала тому, что Геттинген в первой трети XX в. становится одним из мировых центров математической мысли.
После конгресса интересы ученого обращаются к математическому анализу и, как всегда, он находит совершенно неожиданный ход: функции у него оказываются точками бесконечномерного пространства и аналитические результаты получаются на чисто геометрическом языке. Он решает знаменитую проблему Варинга из теории чисел, проблему возможности представления любого натурального числа в виде суммы степеней чисел: четырех квадратов, девяти кубов, девятнадцати четвертых степеней и т.д. К этому времени уже была доказана возможность представления числа в виде суммы четырех квадратов.
Значительные исследования были проведены Гильбертом в теории бесконечных множеств, где он также применяет аксиоматический метод построения теории.
В 1930 г., как и полагалось немецкому профессору в 68 лет, Гильберт уходит в отставку.
Но жизнь готовила Гильберту трагические последние годы. После прихода гитлеровцев к власти в Германии ученый до конца жизни прожил в Геттингене в стороне от университетских дел. «Математика в Геттингене? Да она просто не существует больше» - так ответил Гильберт на вопрос нацистского министра.
ИВАН ГЕОРГИЕВИЧ ПЕТРОВСКИЙ
(1901-1973)
И. Г. Петровский – советский математик, крупный государственный и общественный деятель. Герой Социалистического Труда (1969), лауреат Государственных премий (1946, 1952), академик (1946), член Президиума Верховного Совета СССР (1966-1973).
В 1927 г. И. Г. Петровский окончил Московский государственный университет, с 1933 г. он был профессором механико-математического факультета МГУ, с 1950г. заведовал кафедрой дифференциальных уравнений, а с 1951 г. и до конца своей жизни был ректором Московского университета. В 1946 г. он был избран действительным членом АН СССР.
И. Г. Петровский получил фундаментальные научные результаты в самых различных областях математики: в теории уравнений с частными производными, в алгебраической геометрии, теории вероятностей, теории обыкновенных дифференциальных уравнений, математической физике.
И. Г. Петровский – создатель теории систем уравнений с частными производными. До его работ основным объектом изучения теории уравнений с частными производными были конкретные уравнения, к которым приводили физические задачи, а также уравнения второго порядка трех основных типов: эллиптического, параболического и гиперболического. И. Г. Петровский выделил и изучил три широких класса систем уравнений с частными производными, которые позднее вошли в науку под названием эллиптических, параболических и гиперболических по Петровскому систем.
В 1937 г. И. Г. Петровский дал наиболее полное и исчерпывающее решение вопроса, поставленного в 19-й проблеме Гильберта – вопроса об описании класса дифференциальных уравнений и систем, все достаточно гладкие решения которых являются аналитическими функциями. Оказалось, что таким свойством обладают эллиптические по Петровскому системы. Это – одна из 23 проблем, сформулированных Д. Гильбертом на Международном математическом конгрессе в 1900 г., они рассматривались как важнейшие задачи, стоящие перед математиками XX в.
В 1933 г. ученый выполнил работу по топологии действительных алгебраических кривых. В ней были даны ответы на вопросы, поставленные в 16-й проблеме Гильберта.
Большое влияние на развитие теории вероятностей оказали работы И. Г. Петровского, выполненные в 30-е гг. Исключительное значение имеют не только результаты этих работ, но и методы исследования, которые были в них предложены.
Будучи ректором МГУ, И. Г. Петровский много сделал для развития научных исследований и улучшения подготовки специалистов в университетах страны.
Он написал три учебника для студентов вузов: «Лекции по теории обыкновенных дифференциальных уравнений», «Лекции по теории интегральных уравнений» и «Лекции об уравнениях с частными производными».
Большое внимание ученый уделял преподаванию математики в средней школе. По его инициативе были организованы курсы повышения квалификации учителей школ РСФСР при МГУ, он принимал участие в организации заочной математической школы и школы-интерната при МГУ.