Математика не является исключением из всех областей знания – в ней также образуются понятия, возникающие из практических ситуаций и последующих абстрагирований; она позволяет изучать действительность также приближенно. Но при этом следует иметь в виду, что математика изучает не вещи реального мира, а абстрактные понятия и что логические ее выводы абсолютно строги и точны. Ее приближенность носит не внутренний характер, а связана с составлением математической модели явления. Заметим еще, что правила математики не обладают абсолютной применимостью, для них также существует ограниченная область применения, где они господствуют безраздельно. Поясним высказанную мысль примером: оказывается, что два и два не всегда равно четырем. Известно, что при смешивании 2 л спирта и 2 л воды получается меньше 4 л смеси. В этой смеси молекулы располагаются компактнее, и объем смеси оказывается меньше суммы объемов составляющих компонентов. Правило сложения арифметики нарушается. Можно еще привести примеры, в которых нарушаются другие истины арифметики, например при сложении некоторых объектов оказывается, что сумма зависит от порядка суммирования.
Советские математики рассматривают математические понятия не как создание чистого разума, а как абстракции от реально существующих вещей, явлений, процессов или же абстракции от уже сложившихся абстракций (абстракции высших порядков). В «Диалектике природы» Ф. Энгельс писал, что «... вся так называемая чистая математика занимается абстракциями... все ее величины суть, строго говоря, воображаемые величины...» Эти слова достаточно четко отражают мнение одного из основоположников марксистской философии о роли абстракций в математике. Нам только следует добавить, что все эти «воображаемые величины» берутся из реальной действительности, а не конструируются произвольно, свободным полетом мысли. Именно так вошло во всеобщее употребление понятие числа. Сначала это были числа в пределах единиц, и притом только целые положительные числа. Затем опыт заставил расширить арсенал чисел до десятков и сотен. Представление о неограниченности ряда целых чисел родилось уже в исторически близкую нам эпоху: Архимед в книге «Псаммит» («Исчисление песчинок») показал, как можно конструировать числа еще большие, чем заданные. Одновременно из практических нужд родилось понятие дробных чисел. Вычисления, связанные с простейшими геометрическими фигурами, привели человечество к новым числам – иррациональным. Так постепенно формировалось представление о множестве всех действительных чисел.
Тот же путь можно проследить для любых других понятий математики. Все они возникли из практических потребностей и постепенно сформировались в абстрактные понятия. При этом всегда следует помнить прекрасные слова Ф. Энгельса: «... чистая математика имеет значение, независимое от особого опыта каждой отдельной личности... Но совершенно неверно, будто в чистой математике разум имеет дело только с продуктами собственного творчества и воображения. Понятия числа и фигуры взяты не откуда-нибудь, а только из действительного мира. Десять пальцев, на которых люди научились считать, т.е. производить первую арифметическую операцию, представляют собой все, что угодно, только не продукт свободного творчества разума. Чтобы считать, надо иметь не только предметы, подлежащие счету, но обладать уже и способностью отвлекаться при рассмотрении этих предметов от всех прочих свойств, кроме числа, а эта способность есть результат долгого исторического развития, опирающегося на опыт. Как понятие числа, так и понятие фигуры заимствовано исключительно из внешнего мира, а не возникло в голове из чистого мышления. Должны были существовать вещи, имеющие определенную форму, и эти формы должны были подвергаться сравнению, прежде чем можно было прийти к понятию фигуры».
ДАВИД ГИЛЬБЕРТ
(1862-1943)
Летом 1900 г. математики собрались на свой второй Международный конгресс в Париже. Немецкий математик, профессор Геттингенского университета, Д. Гильберт был приглашен сделать один из основных докладов. Крупнейший математик мира, он прославился своими работами по алгебре и теории чисел, а незадолго перед конгрессом решительно перестроил аксиоматику евклидовой геометрии с учетом того нового, что узнали об аксиоматическом методе математики в XIX в. из его книги «Основания геометрии». После долгих колебаний Гильберт выбрал необычную форму доклада. Он решил сформулировать те проблемы, которые, по его мнению, должны определять развитие математики в наступающем веке.