Если применять операции объединения и пересечения к подмножествам некоторого множества U, то снова получатся подмножества того же множества U. Эти операции обладают многими свойствами, похожими на свойства операций сложения и умножения чисел. Например, пересечение и объединение множеств обладают свойствами коммутативности и ассоциативности, пересечение дистрибутивно относительно объединения, т.е. для любых множеств
С помощью свойств операций над множествами можно преобразовывать выражения, содержащие множества, подобно тому как с помощью свойств операций над числами преобразовывают выражения в обычной алгебре. Возникающая таким путем алгебра называется булевой алгеброй, по имени английского математика и логика Дж. Буля (1815-1864), который занимался ею в связи с проблемами математической логики. Булевы алгебры находят многочисленные применения, в частности в теории электрических сетей.
Основной характеристикой конечного множества является число его элементов (например, множество вершин квадрата содержит 4 элемента). Если в множествах A и B поровну элементов, например если
Г. Кантор предложил аналогичным образом сравнивать между собой бесконечные множества. Говорят, что множества A и B имеют одинаковую мощность, если между ними можно установить взаимно-однозначное соответствие. Сравнивая таким путем множества, составленные из чисел, Кантор показал, что существует взаимно-однозначное соответствие между множеством натуральных чисел и множеством рациональных чисел, хотя множество натуральных чисел является лишь частью множества рациональных чисел. Таким образом, в теории бесконечных множеств теряет силу утверждение, что «часть меньше целого».
Множества, имеющие ту же мощность, что и множество натуральных чисел, называют счетными. Таким образом, множество рациональных чисел счетно. Важнейший пример несчетного множества – множество всех действительных чисел (или, что то же самое, множество точек на прямой линии). Так как прямая линия непрерывна, то такую несчетную мощность называют мощностью континуума (от латинского continuum - «непрерывный»). Мощность континуума имеют множества точек квадрата, куба, плоскости и всего пространства.
В течение долгих лет математики решали проблему: существует ли множество, мощность которого является промежуточной между счетной и мощностью континуума. В 60-х гг. нашего века американский математик П. Коэн и чешский математик П. Вопенка почти одновременно независимо друг от друга доказали, что как существование такого множества, так и отсутствие его не противоречат остальным аксиомам теории множеств (подобно тому, как принятие аксиомы о параллельных или отрицание этой аксиомы не противоречат остальным аксиомам геометрии).
НАИБОЛЬШИЙ ОБЩИЙ ДЕЛИТЕЛЬ
Наибольшее натуральное число, на которое делится каждое из данных целых чисел, называется наибольшим общим делителем этих чисел. Для чисел a1
,a2,...,an он обозначается (a1,a2,...,an).Например: (28,21)=7, (60,27,42)=3.
Для того чтобы найти наибольший общий делитель двух целых чисел, можно воспользоваться алгоритмом Евклида (см. Евклида алгоритм). Если же каждое из данных чисел разложено на простые множители, то его можно отыскать иначе. Для этого нужно выписать простые числа, входящие в каждое из данных разложений, причем если простой множитель входит в разложение одного из чисел k раз, а в разложение другого -
Пример: Найдем (100,500):
или
Нахождение наибольшего общего делителя двух чисел оказывается полезным при сокращении дробей: после сокращения на наибольший общий делитель числителя и знаменателя полученная дробь будет уже несократимой.
НАИМЕНЬШЕЕ ОБЩЕЕ КРАТНОЕ