«Ты когда-нибудь видела, как рисуют множество?» - «Множество чего?» - спросила Алиса. - «Ничего, - отвечала Соня. - Просто множество!». Л. Кэролл
МНОЖЕСТВА
Множество – одно из основных понятий современной математики, используемое почти во всех ее разделах.
Во многих вопросах приходится рассматривать некоторую совокупность элементов как единое целое. Так, биолог, изучая животный и растительный мир данной области, классифицирует все особи по видам, виды по родам и т.д. Каждый вид является некоторой совокупностью живых существ, рассматриваемой как единое целое.
Для математического описания таких совокупностей и было введено понятие множества. По словам одного из создателей теории множеств – немецкого математика Георга Кантора (1845-1918), «множество есть многое, мыслимое нами как единое». Разумеется, эти слова не могут рассматриваться как математически строгое определение множества, такого определения не существует, поскольку понятие множества является исходным, на основе которого строятся остальные понятия математики. Но из этих слов ясно, что можно говорить о множестве натуральных чисел, множестве треугольников на плоскости.
Множества, состоящие из конечного числа элементов, называются конечными, а остальные множества – бесконечными. Например, множество китов в океане конечно, а множество рациональных чисел бесконечно. Конечные множества могут быть заданы перечислением их элементов (например, множество учеников в данном классе задается их списком в классном журнале). Если множество A состоит из элементов a,b,c, то пишут:
Если элемент x принадлежит множеству A, то пишут:
Всякий квадрат является прямоугольником. Говорят, что множество квадратов является частью множества прямоугольников, или, как говорят в математике, является подмножеством множества прямоугольников. Если множество A является подмножеством множества B, то пишут:
Из данных множеств A и B можно построить новые множества, применяя операции пересечения, объединения и вычитания. Пересечением множеств A и B называют их общую часть, т.е. множество элементов, принадлежащих как A, так и B. Это множество обозначают:
Объединением множеств A и B называют множество, составленное из элементов, принадлежащих хотя бы одному из этих множеств. В различных вопросах классификации используется представление множеств в виде объединения попарно непересекающихся подмножеств. Например, множество многоугольников является объединением множества треугольников, четырехугольников, ..., n-угольников.