Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XIII книга знаменитых «Начал» Евклида. Эти многогранники часто называют также Платоновыми телами – в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном, четыре из них олицетворяли четыре стихии: тетраэдр – огонь, куб – землю, икосаэдр – воду и октаэдр – воздух; пятый же многогранник, додекаэдр, символизировал все мироздание – его по-латыни стали называть quinta essentia («пятая сущность»). Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было нетрудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов
МНОГОУГОЛЬНИК
Часть плоскости, ограниченная замкнутой ломаной
Рис. 1
Общим свойством n-угольников является неизменность суммы их (внутренних) углов:
С древних времен многоугольники принято классифицировать и называть соответственно степени их симметричности, правильности. Среди треугольников выделяют равнобедренные (с одной осью симметрии) и равносторонние, или правильные (с тремя осями симметрии) (рис. 2). Четырехугольники, имеющие центр симметрии, называют параллелограммами. Конечно, такое определение эквивалентно школьному: параллелограмм – это четырехугольник, у которого противоположные стороны попарно параллельны. Четырехугольник, у которого две стороны (основания) параллельны, а две другие (боковые стороны) не параллельны, именуют трапецией.
Рис. 2
Можно доказать, что больше одного центра симметрии многоугольник иметь не может, а вот осей симметрии может быть любое число. Четырехугольники с единственной осью симметрии бывают двух видов: равнобедренные (или равнобокие) трапеции и дельтоиды (или ромбоиды) (рис. 3). Параллелограммы, имеющие оси симметрии, подразделяются на ромбы (параллелограммы с равными сторонами), прямоугольники (параллелограммы с равными - прямыми - углами) и квадраты (ромбы с прямыми углами или прямоугольники с равными сторонами); осей симметрии у них 2 или 4 (рис. 4).
Рис. 3
Рис. 4
При произвольном
Рис. 5
Если при данном
Рис. 6
Рис. 7
Еще в глубокой древности была поставлена практическая задача построения правильного n-угольника
Рис. 8