Числовое неравенство может быть верным или неверным; например, неравенства 27
>53; 40/77<13/25;Решая или доказывая неравенства, мы опираемся на основные свойства отношения «больше - меньше» между числами:
(1) отношение неравенства антисимметрично, т.е. для любых различных чисел a,b либо a>b, либо b>a, и транзитивно, т.е. для любых трех чисел a,b,c если a>b и b>c, то a>c;
(2) если a>b, то a+c>b+c при любом c;
(3) если a>b и c>0, то ac>bc.
Из последних двух свойств, связывающих отношение неравенства между числами с арифметическими операциями, именно свойство (3) вызывает наибольшее число ошибок у начинающих: часто забывают, что при умножении на отрицательное число неравенство изменяется на противоположное. Из основных свойств (1), (2), (3) можно вывести все другие: если a
При расширении понятия числа - переходя от целых чисел к рациональным, затем к действительным - мы должны определять отношение «больше - меньше» на новом множестве так, чтобы сохранялись основные его свойства. По определению из двух дробей p/q и m/n (с положительными знаменателями q,n) первая больше, если pn>mq; из двух положительных бесконечных десятичных дробей больше та, у которой больше единиц в самом левом из несовпадающих разрядов (при этом не рассматриваются дроби с окончаниями 9999...).
С помощью неравенств задаются основные числовые множества (отрезок
а выпуклой вверх - если верно неравенство противоположного смысла (см. Выпуклые функции); для функции, имеющей производную, это эквивалентно тому, что
Рис. 1
Выпуклые функции и их производные
На языке неравенств нередко формулируется постановка задачи во многих приложениях математики. Например, многие экономические задачи сводятся к исследованию систем линейных неравенств с большим числом переменных (см. Геометрия). Часто то или иное неравенство служит важным вспомогательным средством, основной леммой, позволяющей доказать или опровергнуть существование каких-то объектов (скажем, решений уравнения), оценить их количество, провести классификацию. Например, чтобы классифицировать все правильные многогранники, нужно прежде всего вспомнить, какие углы могут иметь правильные многоугольники, и воспользоваться неравенством: сумма величин плоских углов выпуклого многогранного угла не больше 360°.
Эта теорема наряду с самыми первыми геометрическими неравенствами («перпендикуляр меньше наклонной, проведенной из одной и той же точки к данной прямой», «сторона треугольника меньше суммы двух других сторон», «против большего угла треугольника лежит большая сторона») принадлежит еще древнегреческой математике - она содержалась в знаменитых «Началах» Евклида.
Неравенства - это не только вспомогательный инструмент. В каждой области математики - алгебре и теории чисел (см. Чисел теория), геометрии и топологии, теории вероятностей и теории функций, математической физике и теории дифференциальных уравнений, теории информации и дискретной математике - можно указать фундаментальные результаты, формулируемые в виде неравенств.
Во многих разделах математики, особенно в математическом анализе, в прикладной математике, неравенства встречаются значительно чаще, чем равенства. Скажем, решение каких-то практически важных уравнений лишь по счастливой случайности удается найти точно - в виде числа или формулы, а для приближенного решения в математике всегда требуется указать оценку погрешности, т.е. доказать некоторое неравенство. В этом заключается одно из главных отличий между математическим и физическим уровнем строгости: физик готов ограничиться нахождением «порядка величины» там, где математик стремится строго доказать какие-то оценки, т.е. неравенства.