Читаем Энциклопедический словарь юного математика полностью

Находя оценку той или иной величины сверху (максимум) или снизу (минимум), т.е. доказывая, что эта величина не больше какого-то числа M (или не меньше m), мы стараемся получить как можно более точный результат: оценку сверху - пониже, снизу - повыше. Самая точная возможная оценка числового множества A сверху обозначается sup A (супремум A). Аналогично определяется самая точная оценка снизу: inf A (инфинум A). Рассмотрим, для примера, отношение площади S многоугольника к квадрату его периметра P. Чем более «округлый» многоугольник, тем величина S/P2 больше - в этом легко убедиться на примерах (рис. 2). Точная верхняя грань этого отношения: sup S/P2 = 1/(4π). На множестве всех многоугольников эта оценка не достигается - нет такого многоугольника, для которого S/P2 в точности равно 1/(4π); а на множестве всех (выпуклых) фигур - достигается, причем только для круга радиуса R это отношение как раз равно πR2/(2πR)2 = 1/(4π). Когда величина достигает своего наибольшего значения, вместо sup можно писать max (максимум); соответственно вместо inf писать min (минимум).

Рис. 2

Отношение площади к квадрату периметра максимально для круга.

Доказательство неравенств тесно связано с исследованием функций на экстремум (см. Экстремум функции). Чтобы доказать, что максимум какой-то функции f равен M, мы должны указать значения аргументов, при которых функция f равна M, и доказать неравенство f ≤ M. Например, тот факт, что на множестве всех фигур S/P2 ≤ 1/(4π), обычно формулируется так: из всех фигур данного периметра наибольшую площадь имеет круг. Это знаменитое изопериметрическое неравенство (доказанное впервые Л. Эйлером) - представитель целого класса геометрических неравенств, различные варианты и многомерные обобщения которых используются в разных отделах математики и ее приложениях.

Важная часть работы математика - доказательство тождественных неравенств, т.е. таких, которые верны при всех значениях входящих в них переменных (или при всех заранее оговоренных допустимых значениях переменных). Иногда это дело несложное - например, чтобы доказать неравенство f > g, где f и g - некоторые функции, удается преобразовать разность f - g так, что становится очевидной ее положительность: a2 + b2 ≥ 2ab, поскольку (a-b)2 ≥ 0; a2 + b2 + c2 ≥ ab + bc + ca, поскольку (a-b)2 + (b-c)2 + (c-a)2 ≥ 0 .

Но бывает, что для доказательства неравенства приходится использовать весьма тонкие геометрические или аналитические соображения. Как опытному шахматисту помогает знание основных дебютов, так и математику полезно знать некоторые часто встречающиеся классические тождественные неравенства. Среди них - красивые неравенства, в которые переменные входят симметричным образом (см. Средние значения).

Серию таких неравенств дает следующее общее неравенство датского математика И. Йенсена (1859-1925) для выпуклых функций: если f - выпуклая вниз функция на отрезке [a,b] и p1,p2,...,pn - любые положительные числа, то при всех x1,x2,...,xn из [a,b]

.

Для выпуклой вверх функции верно обратное неравенство; в частности, при f(x) = log x, p1 = p2 =...= pn = 1/n, xi > 0  (i = 1,...,n), отсюда получается неравенство для среднего арифметического и среднего геометрического.

Наглядное объяснение этого неравенства состоит в следующем: если на графике выпуклой вниз функции расположить грузы с произвольными массами p1,p2,...,pn, то центр их масс будет лежать выше графика (рис. 3).

Рис. 3

Центр масс системы грузов имеет координаты

Для получения оценок сумм вида f(1) + f(2) + ... + f(n) применяются метод математической индукции, а также сравнение этой суммы со специально подобранным интегралом. Например, для суммы

hn = 1 + 1/2 +...+ 1/n

(см. Гармонический ряд) сравнение ее с площадью под гиперболой y = 1/x (рис. 4) дает оценки: ln n < hn < ln n + 1. Скажем, при n = 1000, отсюда получаем 6,9 < h1000 < 7,91.

Рис. 4

Доказательства непрерывности и дифференцируемости элементарных функций, формул для их производных опираются на некоторые основные неравенства; среди них - неравенства sin x < x < tg x (при 0 < x < π/2), ex > 1 + x, неравенство Бернулли (1+x)n ≥ 1 + nx (при x > -1, натуральном n).

Методы математического анализа, в свою очередь, удобное средство доказательства неравенств для функций от одной переменной. Так, если значения двух функций f(x) и g(x) совпадают при x = a и f'(x) ≤ g'(x) при x ≥ a, то f(b) > g(b) при любом b ≥ a, другими словами, неравенство можно почленно интегрировать. Приведем один пример, показывающий, как это соображение позволяет вычислять с большой точностью sin x.

Поскольку cos x ≤ 1 и (sin x)' = cos x, то при x > 0

.

Точно так же отсюда получаем последовательно:

Перейти на страницу:

Похожие книги