Еще один такой шаг приводит к формуле (a+b)4
= a4+4a3b+6a2b2+4ab3+b4.Легко заметить закон образования коэффициентов: коэффициент 4 при a3
b есть сумма коэффициентов 3 и 1 при a2b и a3. Аналогично, коэффициент 6 при a2b2 является суммой 3 + 3 коэффициентов при ab2 и a2b. По тому же закону получаем и коэффициент 4 при ab3.Таким образом, коэффициент при an-k
bk в разложении (a+b)n равен сумме коэффициентов и при an-kbk-1 и при an-k-1bk в разложении (a+b)n-1, а коэффициенты при an и при bn равны единице.Отсюда следует, что коэффициенты в равенстве
(1)
являются членами (n+1)
-й строки треугольника Паскаля (см. Паскаля треугольник). Это утверждение было известно задолго до Паскаля - его знал живший в XI-XII вв. среднеазиатский математик и поэт Омар Хайям (к сожалению, его сочинение об этом до нас не дошло). Первое дошедшее до нас описание формулы бинома Ньютона содержится в появившейся в 1265 г. книге среднеазиатского математика ат-Туси, где дана таблица чисел (биномиальных коэффициентов) до n=12 включительно.Европейские ученые познакомились с формулой бинома Ньютона, по-видимому, через восточных математиков. Детальное изучение свойств биномиальных коэффициентов провел французский математик и философ Б. Паскаль в 1654 г. Еще до этого было известно, что числа
являются в то же время числами «сочетаний без повторений» из n элементов по k (см. Комбинаторика).
В 1664-1665 гг. И. Ньютон установил, что формула (1) обобщается на случай произвольных (дробных и отрицательных) показателей, но при этом получается сумма из бесконечного множества слагаемых. Именно он показал, что при |x|<1
(2)
При n = -1
формула (2) превращается в известную формулу для суммы бесконечной геометрической прогрессии:1/(1+x) = 1 - x + x2
- x3 +...+ (-1)n-1xn + ....ОБРАТНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
В ряде задач математики и ее приложений требуется по известному значению тригонометрической функции найти соответствующее значение угла, выраженное в градусной или в радианной мере. Известно, что одному и тому же значению синуса соответствует бесконечное множество углов, например, если sin α = 1/2
, то угол α может быть равен и 30° и 150°, или в радианной мере π/6 и 5π/6, и любому из углов, который получается из этих прибавлением слагаемого вида 360°·k, или соответственно 2πk, где k - любое целое число. Это становится ясным и из рассмотрения графика функции y = sin x на всей числовой прямой (см. рис. 1): если на оси Oy отложить отрезок длины 1/2 и провести прямую, параллельную оси Ox, то она пересечет синусоиду в бесконечном множестве точек. Чтобы избежать возможного разнообразия ответов, вводятся обратные тригонометрические функции, иначе называемые круговыми, или аркфункциями (от латинского слова arcus - «дуга»).
Рис. 1
Основным четырем тригонометрическим функциям sin x
, cos x, tg x и ctg x соответствуют четыре аркфункции arcsin x, arccos x, arctg x и arcctg x (читается: арксинус, арккосинус, арктангенс, арккотангенс). Рассмотрим функции arcsin x и arctg x, поскольку две другие выражаются через них по формулам:arccos x = π/2 - arcsin x, arcctg x = π/2 - arctg x
.Равенство y = arcsin x
по определению означает такой угол y, выраженный в радианной мере и заключенный в пределах от - π/2 до π/2, синус которого равен x, т.е. sin y = x. Функция arcsin x является функцией, обратной функции sin x, рассматриваемой на отрезке [-π/2, +π/2], где эта функция монотонно возрастает и принимает все значения от -1 до +1. Очевидно, что аргумент у функции arcsin x может принимать значения лишь из отрезка [-1,+1]. Итак, функция y = arcsin x определена на отрезке [-1,+1], является монотонно возрастающей, и ее значения заполняют отрезок [-π/2, +π/2]. График функции показан на рис. 2.
Рис. 2
При условии -1≤a≤1
все решения уравнения sin x = a представим в виде x = (-1)n arcsin a + πn, n = 0,±1,±2,.... Например, еслиsin x = (√2)/2
, то x = (-1)nπ/4 + πn, n = 0,±1,±2,....Соотношение y = arctg x
определено при всех значениях x и по определению означает, что угол y, выраженный в радианной мере, заключен в пределах-π/2 < y < π/2
и тангенс этого угла равен x, т. е. tg y = x
. Функция arctg x определена на всей числовой прямой, является функцией, обратной функции tg x, которая рассматривается лишь на интервале-π/2 < x < π/2
.Функция y = arctg x
монотонно возрастающая, ее график дан на рис. 3.
Рис. 3
Все решения уравнения tg x = a
могут быть записаны в виде x = arctg a + πn, n = 0,±1,±2,....