(апофема hn
, конечно, стремится к R). Совершенно аналогично выводится и формула для площади сектора s:(lim - читается «предел»). Тем самым решена и задача определения площади сегмента с хордой AB, ибо она представляется как разность или сумма (рис. 1, 2) площадей соответствующих сектора и треугольника AOB.
ОКРУЖНОСТЬ ДЕВЯТИ ТОЧЕК
У каждого треугольника имеется, и притом единственная, окружность девяти точек. Это - окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника (рис. 1): основания его высот D1
,D2 и D3, основания его медиан D4,D5 и D6, середины D7,D8 и D9 отрезков прямых от точки пересечения его высот H до его вершин.Рис. 1
Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха). Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это - точки ее касания с четырьмя окружностями специального вида (рис. 2). Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек
Рис. 2
Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой H - его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.
ОПРЕДЕЛЕНИЕ
Определение - математическое предложение, предназначенное для введения нового понятия на основе уже известных нам понятий. В определении обычно содержится слово «называется». Например, определение ромба формулируется следующим образом: «Ромбом называется параллелограмм, две смежные стороны которого равны между собой». В этом определении новое понятие «ромб» введено на основе ряда понятий, уже известных к этому времени: «параллелограмм», «сторона», «смежные стороны», «равенство отрезков». Эти ранее введенные понятия, в свою очередь, определяются через предыдущие. Например, «параллелограмм» определяется через ранее введенные понятия «четырехугольник», «противоположные стороны четырехугольника», «параллельные прямые». В конце концов мы приходим к небольшому числу первоначальных понятий, через которые можно определить все встречающиеся в курсе геометрии понятия. Сами же первоначальные понятия не определяются, а их свойства описываются аксиомами.
Данное выше определение ромба можно записать в виде:
(дан параллелограмм ABCD)
Эта запись похожа на запись теоремы (см. Необходимое и достаточное условия), но здесь назначение частей этой записи иное. Первая часть записи (аналогичная разъяснительной части теоремы) указывает родовое понятие, с помощью которого вводится новое понятие. В данном случае родовым понятием является параллелограмм, т.е. ромбы выделяются из множества всех параллелограммов. Вторая часть определения (аналогичная условию теоремы) указывает видовые отличия, т.е. те свойства, которыми должен обладать параллелограмм, чтобы его можно было назвать ромбом. Наконец, третья часть определения (аналогичная заключению теоремы) вводит новый термин, т.е. название вводимого понятия - в данном случае «ромб». То, что ABCD является ромбом (при выполнении видовых отличий), доказывать не нужно - это справедливо по определению. Поэтому под знаком
Еще один пример: квадратом называется ромб, один из углов которого - прямой. Это можно записать так:
(дан ромб ABCD)
Здесь родовое понятие - ромб, видовое отличие задается равенством
Рис. 1
Аналогично могут быть рассмотрены и другие определения. Например, при рассмотрении поля родовым понятием является множество, а видовыми отличиями - аксиомы поля (см. Аксиоматика и аксиоматический метод).