Читаем Энциклопедический словарь юного математика полностью

В принципе можно обойтись вовсе без определений, излагая какую-либо математическую теорию. Например, можно изгнать термин «гипотенуза» из школьного курса геометрии, заменив его всюду на «сторона треугольника, лежащая против прямого угла». Уже из этого примера видно, насколько такая замена удлиняет текст (и осложняет его понимание), а ведь мы заменяем только одно слово! Легко представить себе, что было бы, если бы мы захотели излагать геометрию (и не только геометрию) вовсе без определений!

Давая определения, нужно следить за тем, чтобы не возникло порочного круга. Такой порочный круг возникнет, например, если мы определим простое число как число, не являющееся составным, а затем определим составное число как число, не являющееся простым. Ясно, что такие «определения», по сути дела, ничего не определяют. Другими словами, нельзя, чтобы какое-то понятие A1 определялось через A2, A2 - через A3, …, Ak-1 - через Ak, а Ak - снова через A1.


ОПРЕДЕЛИТЕЛЬ


Определитель - число, поставленное по определенным правилам в соответствие квадратной матрице.


Определителем квадратной матрицы второго порядка  называют число a11a22 - a12a21.

Его обозначают det A, или

.

Часто вместо слова «определитель» говорят «детерминант», откуда и взялось указанное обозначение.

Определитель третьего порядка определим через определители второго порядка:

Здесь первые множители в знакочередующейся сумме - числа первой строки, а вторые множители - определители матриц, полученных вычеркиванием строки и столбца, которым принадлежит первый множитель.

Порядок определителя можно увеличивать и дальше. Пусть определены определители матриц вплоть до (n-1)-го порядка. Определителем матрицы n-го порядка

назовем число

где вновь имеем знакочередующуюся сумму произведений, в которых один из множителей - элемент первой строки, а другой - определитель матрицы (n-1)-го порядка, полученной вычеркиванием той строки и того столбца, которым принадлежит первый множитель.

Вычислим, например, определитель третьего порядка:

Определители играют важную роль в решении систем линейных уравнений.

Любопытно, что если составить из координат двух векторов d = (a1,a2) и b = (b1,b2) определитель

,

то его величина, с точностью до знака, равна площади параллелограмма, построенного на этих векторах (рис. 1), а для трех векторов в пространстве , ,  определитель

равен, опять с точностью до знака, объему параллелепипеда, построенного на этих векторах (рис. 2).

Рис. 1

Рис. 2


ОТРЕЗОК И ИНТЕРВАЛ


Отрезок - одна из основных геометрических фигур. Отрезком называется часть прямой, лежащая между точками A и B, включая и сами эти точки. Отрезок обозначается [AB]. Точки A и B называются его концами. Любая точка отрезка, лежащая между его концами, называется внутренней точкой отрезка. Длина отрезка равна расстоянию между его концами и обозначается |AB|.


Если рассматриваемая прямая является числовой прямой и ее точкам A и B соответствуют числа a и b  (a < b), то отрезком будет множество всех действительных чисел x, удовлетворяющих неравенствам a ≤ x ≤ b, он обозначается [a,b]. Множество точек x, для которых справедливы неравенства a < x < b, называется интервалом и обозначается ]a,b[ или (a,b). Длина отрезка и интервала равна числу b - a. Вся числовая прямая обозначается бесконечным интервалом ]-∞ +∞[, бесконечные интервалы ]-∞, a[ и ]b, +∞[ есть соответственно лучи: первый состоит из всех чисел, меньших a, второй - из всех чисел, больших b.

Хотя разница между отрезком и интервалом, казалось бы, невелика, однако свойства непрерывных функций различаются в зависимости от того, рассматриваем мы их на отрезке или интервале. В частности, функция, непрерывная на отрезке, обязана быть ограниченной, а функция, непрерывная на интервале, может ограниченной и не быть.


ПАРАБОЛА


Парабола - одно из конических сечений. Эту кривую можно определить как фигуру, состоящую из всех тех точек M плоскости, расстояние каждой из которых до заданной точки F, называемой фокусом параболы, равно ее расстоянию до заданной прямой l, называемой директрисой параболы (рис. 1). Ближайшая к директрисе точка параболы называется вершиной параболы; прямая, проходящая через фокус перпендикулярно директрисе, - это ось симметрии параболы. Ее называют просто осью параболы.

Рис. 1

Определение параболы наводит на идею конструкции чертежного прибора, способного вычерчивать параболу. На листе бумаги (рис. 2) нужно закрепить линейку (ее край будет директрисой будущей параболы), в точке F, которая станет фокусом параболы, булавкой прикрепить конец нити, другой конец которой закрепить в вершине острого угла чертежного треугольника, притом так, чтобы длина нити равнялась катету этого треугольника. Перемещая второй катет вдоль линейки и прижимая нить острием карандаша к первому катету треугольника, мы получим кривую, точки которой находятся на одинаковых расстояниях от края линейки и от точки F, т.е. параболу.

Рис. 2

Перейти на страницу:

Похожие книги