Читаем Энциклопедический словарь юного математика полностью

Числа  называют обычно числами сочетаний из n элементов по k, или биномиальными коэффициентами (см. Ньютона бином); в некоторых книгах для них используют обозначение . Оно удобно для запоминания простой формулы, позволяющей по заданным номерам n и k сразу вычислить, какое число стоит на k-м месте в n-й строке треугольника Паскаля:

Используя обозначение факториала m! = 1·2·...·m, эту формулу можно записать еще короче:

.

В «равнобедренной» форме треугольника Паскаля на рис. 1 очевидно свойство симметрии каждой строки ; при этом посередине строки стоит самое большое число  (если n четно) или два самых больших числа  (если n нечетно), а к краям числа монотонно убывают.

Если записать тот же треугольник в «прямоугольной» форме (рис. 4), то целый ряд свойств треугольника Паскаля, связанный с суммами его чисел, будет удобнее наблюдать. В частности, сумма нескольких первых чисел каждого столбца равна идущему за ними числу следующего столбца:

(числа  называются треугольными числами, а числа  - пирамидальными; см. Фигурные числа); и вообще, при m > k

.

Рис. 4

Суммы чисел по «восходящим» (зеленым) диагоналям на рисунке 4 равны последовательным числам Фибоначчи (см. Фибоначчи числа).

Для применений в теории вероятностей особенно важны асимптотические формулы для чисел треугольника Паскаля, т.е. приближенные оценки этих чисел при больших n.


ПЕРИОДИЧЕСКАЯ ДРОБЬ


Периодическая дробь - это бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр. Например, 2,51313.... Обычно такую дробь записывают короче: 2,5(13), т.е. помещают повторяющуюся группу цифр в скобки и говорят: «13 в периоде». Примером непериодической бесконечной дроби может служить дробь 0,1010010001..., у которой количество нулей между единицами все время увеличивается на 1, а также дробь, представляющая собой любое другое иррациональное число, например √3. Если в периодической дроби повторяющаяся группа цифр расположена непосредственно после запятой, то такую дробь называют чистой, в противном случае - смешанной. Всякую периодическую дробь можно обратить в обыкновенную, т.е. периодические дроби являются числами рациональными. Чистая периодическая дробь, меньшая 1, равна такой правильной обыкновенной дроби, в числителе которой стоит период, а в знаменателе - число, изображенное цифрой 9, которая написана столько раз, сколько цифр в периоде.


Так, 0,(12) = 12/99 = 4/33. Теперь нетрудно обратить в обыкновенную дробь любую периодическую дробь. Покажем, как это делается, на примере:

3,1(3) = 3 + 0,1 + 0,0(3) = 3 + 1/10 + 1/10·3/9 = 47/15.

Вывод этого правила основан на формуле суммы бесконечно убывающей геометрической прогрессии. При решении обратной задачи (обращение обыкновенной дроби в десятичную) всегда получается либо конечная десятичная дробь, либо периодическая дробь. При этом конечная десятичная дробь получается тогда, когда знаменатель несократимой обыкновенной дроби не содержит никаких простых множителей, кроме 2 и 5; чистая периодическая - когда знаменатель несократимой обыкновенной дроби не делится ни на 2, ни на 5; во всех остальных случаях получается смешанная периодическая дробь.


ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ


Изучая явления природы, решая технические задачи, мы сталкиваемся с периодическими процессами, которые можно описать функциями особого вида.


Функция y=f(x) с областью определения D называется периодической, если существует хотя бы одно число T > 0, такое, при котором выполняются следующие два условия:

1) точки x + T, x - T принадлежат области определения D для любого x ∈ D;

2) для каждого x из D имеет место соотношение

f(x) = f(x+T) = f(x-T).

Число T называется периодом функции f(x). Иными словами, периодической функцией является такая функция, значения которой повторяются через некоторый промежуток. Например, функция y = sin x - периодическая (рис. 1) с периодом 2π.

Рис. 1

Заметим, что если число T является периодом функции f(x), то и число 2T также будет ее периодом, как и 3T, и 4T и т.д., т.е. у периодической функции бесконечно много разных периодов. Если среди них имеется наименьший (не равный нулю), то все остальные периоды функции являются кратными этого числа. Заметим, что не каждая периодическая функция имеет такой наименьший положительный период; например, функция f(x) = 1 такого периода не имеет. Важно также иметь в виду, что, например, сумма двух периодических функций, имеющих один и тот же наименьший положительный период T0, не обязательно имеет тот же самый положительный период. Так, сумма функций f(x) = sin x и g(x) = - sin x вообще не имеет наименьшего положительного периода, а сумма функций f(x) = sin x + sin 2x и g(x) = - sin x, наименьшие периоды которых равны 2π, имеет наименьший положительный период, равный π.

Перейти на страницу:

Похожие книги