Читаем Энциклопедический словарь юного математика полностью

В геометрии принято записывать уравнение параболы в системе координат, осью абсцисс которой является ось параболы, а осью ординат - перпендикулярная ей прямая, проходящая через вершину параболы. Такое уравнение имеет вид

y2 = 2px.

Число p в записи уравнения параболы называется параметром параболы; фокус параболы находится в точке (P/2,0), число p - длина отрезка FK (рис. 1).

В математическом анализе принята другая запись уравнения параболы:

y=ax2,

т.е. ось параболы выбрана за ось ординат. Параболой же будет и график любого квадратного трехчлена.

Хорошо известно, что траектория камня, брошенного под углом к горизонту, летящего футбольного мяча или артиллерийского снаряда будет параболой (при отсутствии сопротивления воздуха). Однако мало кто знает, что зона достижимости для пущенных нами камней вновь будет параболой. В данном случае мы говорим об огибающей кривой траекторий камней, выпущенных из данной точки (рис. 3) под разными углами, но с одной и той же начальной скоростью. Если рассматривать такую огибающую в пространстве, то возникнет поверхность, образованная вращением этой параболы вокруг ее оси. Такая поверхность носит название параболоида вращения.

Рис. 3

Как и другие конические сечения, парабола обладает оптическим свойством: все лучи, исходящие из источника света, находящегося в фокусе параболы, после отражения оказываются направленными параллельно ее оси. Это свойство параболы используется при изготовлении прожекторов, автомобильных фар, карманных фонариков, зеркала которых имеют вид параболоидов вращения (рис. 4).

Рис. 4

Очевидно, что пучок параллельных лучей, двигающийся вдоль оси параболы, отражаясь, собирается в ее фокусе. На этом основана идея телескопов-рефлекторов, зеркала которых выполнены в виде параболоидов вращения. Любопытно, что параболоид вращения образует поверхность жидкости в цилиндрическом сосуде, если его вращать относительно своей оси.

Если параболоид вращения равномерно сжать к одной из плоскостей, проходящих через его ось, то получается поверхность, которая называется эллиптическим параболоидом. Это название объясняется тем, что любое плоское сечение этой поверхности - либо эллипс, либо парабола (рис. 5). Уравнение эллиптического параболоида имеет вид

z = x2/a2 + y2/b2.

Рис. 5

Если a=b, то такой эллиптический параболоид будет параболоидом вращения.

Существует еще один тип параболоидов - гиперболический. Это седлообразная поверхность, интересная особенность которой - наличие прямых, целиком принадлежащих этой поверхности, как и у однополостного гиперболоида (рис. 6). Ее плоскими сечениями будут параболы и гиперболы. Если секущая плоскость касается поверхности, то гипербола вырождается в пару пересекающихся прямых. Уравнение гиперболического параболоида имеет вид

z = x2/a2 - y2/b2.

Рис. 6

Слово «парабола» применяют часто ко всем кривым, уравнение которых является степенной функцией. Так, график функции y = x3 называется кубической параболой, график функции y = x4 - параболой четвертой степени, а график функции y = x3/2 - полукубической параболой.

Знание свойств параболы помогает и при изучении корней квадратного уравнения, поскольку они являются точками пересечения параболы - графика квадратного трехчлена с осью абсцисс.


ПАСКАЛЯ ТРЕУГОЛЬНИК


На рис. 1 изображено несколько первых строк числового треугольника, образованного по следующему правилу: по краям каждой строки стоят единицы, а каждое из остальных чисел равно сумме двух стоящих над ним чисел предыдущей строки. По этому правилу легко выписывать одну за другой новые строки этого треугольника. Именно в такой форме он приведен в «Трактате об арифметическом треугольнике» французского математика Б. Паскаля (1623-1662), опубликованном в 1665 г., уже после смерти автора. Но несколько иные варианты этой числовой таблицы встречались столетием раньше у итальянского математика Н. Тартальи, а за несколько веков до этого у среднеазиатского ученого и поэта Омара Хайяма, некоторых китайских и индийских ученых.

Рис. 1

Популярность чисел, составляющих треугольник Паскаля, не удивительна: они возникают в самых естественных задачах алгебры, комбинаторики, теории вероятностей, математического анализа, теории чисел.

Сколько различных k-элементных множеств (сочетаний) можно образовать из данных n элементов? (рис. 2).

Рис. 2

Из 4 различных элементов можно составить такие множества  одноэлементных,  двухэлементных,  трехэлементных и  четырехэлементное

Каковы коэффициенты многочлена (1+x)n?

Сколько существует строчек из n единиц и нулей, в которых ровно k единиц?

Сколькими разными путями можно спуститься из верхней точки A на рис. 3 в k-й перекресток n-го ряда?

Рис. 3

На все эти вопросы ответ дают числа  треугольника Паскаля. Обозначение  предполагает, что верхняя строка треугольника Паскаля состоит из одного числа , следующая (первая) - из двух чисел , и вообще n-я строка состоит из n + 1 чисел:

Перейти на страницу:

Похожие книги