В ряде задач практически удобно переносить изображение с плана на перспективную картину с помощью сетки квадратов (на рис. 3 по горизонтальной плоскости разбросаны одинаковые шары; их видимые размеры пропорциональны их видимым расстояниям от горизонта). Заметим, что изображения сторон квадратов, перпендикулярных картине, все сходятся в «центральной перспективной точке P», а их диагонали - в «точках удаления» S1
и S2. Названия этих точек объясняются тем, что расстоянияРис. 3
Рис. 4
Занимаясь геометрическими построениями перспективных изображений, нетрудно заметить, что некоторые прямые сами собой проходят через одну точку (как, скажем, диагонали и стороны квадратов на рис. 2). За этим фактом можно обнаружить интересные геометрические теоремы. Именно, разрабатывая теорию перспективы, французский архитектор Ж. Дезарг (1593-1662) ввел понятие бесконечно удаленной точки и доказал замечательные геометрические теоремы о конфигурациях точек и прямых, положившие начало новому разделу математики - проективной геометрии.
ПИФАГОРА ТЕОРЕМА
Теорема Пифагора - важнейшее утверждение геометрии. Теорема формулируется так: площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах.
Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI в. до н.э.). Но изучение вавилонских клинописных таблиц и древних китайских рукописей (копий еще более древних манускриптов) показало, что это утверждение было известно задолго до Пифагора, возможно, за тысячелетие до него. Заслуга же Пифагора состояла в том, что он открыл доказательство этой теоремы.
Вероятно, факт, изложенный в теореме Пифагора, был сначала установлен для равнобедренных прямоугольных треугольников. Достаточно взглянуть на мозаику из черных и светлых треугольников, изображенную на рис. 1, чтобы убедиться в справедливости теоремы для треугольника ABC: квадрат, построенный на гипотенузе, содержит 4 треугольника, а на каждом катете построен квадрат, содержащий 2 треугольника. Для доказательства общего случая в Древней Индии располагали двумя способами: в квадрате со стороной a+b изображали четыре прямоугольных треугольника с катетами длин a и b (рис. 2,а и 2,б), после чего писали одно слово «Смотри!». И действительно, взглянув на эти рисунки, видим, что слева свободна от треугольников фигура, состоящая из двух квадратов со сторонами a и b, соответственно ее площадь равна
Однако в течение двух тысячелетий применяли не это наглядное доказательство, а более сложное доказательство, придуманное Евклидом, которое помещено в его знаменитой книге «Начала» (см. Евклид и его «Начала»), Евклид опускал высоту
Рис. 1
Рис. 2
Рис. 3
В наши дни известно несколько десятков различных доказательств теоремы Пифагора. Одни из них основаны на разбиении квадратов, при котором квадрат, построенный на гипотенузе, состоит из частей, входящих в разбиения квадратов, построенных на катетах; другие - на дополнении до равных фигур; третьи - на том, что высота, опущенная из вершины прямого угла на гипотенузу, делит прямоугольный треугольник на два подобных ему треугольника.