Читаем Энциклопедический словарь юного математика полностью

Когда каменщики определяют площадь прямоугольной стены дома, они перемножают высоту и ширину стены. Таково принятое в геометрии определение: площадь прямоугольника равна произведению его смежных сторон. Обе эти стороны должны быть выражены в одних и тех же линейных единицах. Их произведение и составит площадь прямоугольника, выраженную в соответствующих квадратных единицах. Скажем, если высота и ширина стены измерены в дециметрах, то произведение обоих измерений будет выражено в квадратных дециметрах. И если площадь каждой облицовочной плитки составляет квадратный дециметр, то полученное произведение укажет число плиток, нужное для облицовки. Это вытекает из утверждения, положенного в основу измерения площадей: площадь фигуры, составленной из непересекающихся фигур, равна сумме их площадей.

Площадь составной фигуры не изменится, если ее части расположить по-другому, но опять без пересечения (см. Равносоставленные и равновеликие фигуры). Поэтому можно, исходя из формулы площади прямоугольника, находить формулы площадей других фигур. Например, треугольник разбивается на такие части, из которых затем можно составить равновеликий ему прямоугольник. Из этого построения следует, что площадь треугольника равна половине произведения его основания на высоту. Прибегая к подобной перекройке, нетрудно доказать, что площадь параллелограмма равна произведению основания на высоту, площадь трапеции произведению полусуммы оснований на высоту.

Формулу площади параллелограмма можно обосновать и с помощью принципа Кавальери (см. Кавальери принцип). Согласно ему площади двух фигур равны, если равны между собой длины любых двух сечений, проведенных в той и другой фигуре параллельно некоторой прямой и на одинаковом от нее расстоянии.

Иначе можно вывести и формулу площади трапеции, разбивая ее на треугольники. Путем разбиения на треугольники нетрудно определить площадь любого многоугольника, поэтому известны точные формулы площади для правильных многоугольников. Математики античности и средневековья вычисляли площадь круга, рассматривая ее как предел площадей вписанных в этот круг и описанных около него правильных многоугольников, число сторон у которых удваивается неограниченно.

Когда каменщикам приходится облицовывать стену сложной конфигурации, они могут определить площадь стены, подсчитав число пошедших на облицовку плиток. Некоторые плитки, естественно, придется обкалывать, чтобы края облицовки совпали с кромкой стены. Число всех пошедших в работу плиток оценивает площадь стены с избытком, число необломанных плиток - с недостатком. С уменьшением размеров плиток количество отходов уменьшается, и площадь стены, определяемая через число плиток, вычисляется все точнее.

Этот прием применяется и на практике, правда не строительной. Фигуру, площадь которой требуется измерить, вычерчивают на миллиметровой бумаге и подсчитывают сначала число укладывающихся в границы фигуры сантиметровых квадратиков, потом миллиметровых... Если бы существовала миллиметровая бумага с делениями, кратными сколь угодно высокой степени десятки, такая процедура, продолженная неограниченно долго, приводила бы к точному значению площади. Методы нахождения площадей произвольных фигур дает интегральное исчисление.

Существуют и механические приборы для вычисления площадей плоских фигур - так называемые планиметры.


ПОЛЕ


Поле - множество элементов, для которых определены арифметические операции.


Если учитель предложит разложить на множители многочлен x2 - 3, то ученик 6-го класса ответит, что этот многочлен на множители неразложим. Ученик же 7-го класса легко справится с этой задачей, записав разложение в виде x2 - 3 = (x - √3)(x + √3). С разложением на множители многочлена x2 + 4 справятся лишь немногие школьники старших классов, которые знают комплексные числа: x2 + 4 = (x - 2i)·(x + 2i) А если пользоваться лишь действительными числами, то такое разложение осуществить невозможно.

Таким образом, решение вопроса, можно ли разложить данный многочлен на множители, зависит от того, какими числами разрешается пользоваться: только рациональными, или всеми действительными, или, наконец, комплексными числами. При этом, выполняя различные операции над многочленами, их коэффициенты приходится складывать и вычитать, умножать и делить друг на друга. Поэтому в алгебре приходится пользоваться не произвольными множествами коэффициентов, а лишь множествами чисел, обладающих следующим важным свойством: вместе с двумя числами a и b этим множествам принадлежат сумма, разность, произведение и частное чисел a и b (разумеется, кроме случая, когда приходится делить на нуль).

Перейти на страницу:

Похожие книги