Читаем Энциклопедический словарь юного математика полностью

Гипербола, как и другие конические сечения, обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса (рис. 3). Если сделать зеркало, изогнув зеркально отполированный лист металла по дуге гиперболы, а на прямой, соответствующей фокусу гиперболы, поместить свечу (рис. 4), то наблюдатель, находящийся по ту же сторону от зеркала, что и свеча, увидит ее отражение как бы в одном и том же месте, точно так же, как и при отражении от плоского зеркала (вспомним, что прямая является частным случаем гиперболы и соответствующее зеркало будет плоским).

Рис. 3

Рис. 4

Еще пример зона слышимости звука пролетающего самолета. Если самолет движется со сверхзвуковой скоростью, то в воздухе зона слышимости образует конус (рис. 5). Поверхность Земли может приближенно считаться плоскостью, рассекающей этот конус.

Рис. 5

Если гиперболу вращать вокруг ее оси, проходящей через фокусы, то получающаяся поверхность будет называться двуполостным гиперболоидом, потому что состоит из двух полостей: одна – рассмотренная нами, а вторая получается от вращения второй ветви гиперболы (рис. 6). Если же вращать гиперболу вокруг второй се оси, то получится поверхность, называемая однополостным гиперболоидом (рис. 7). Такую форму имеют секции Шаболовской радиобашни в Москве.

Рис. 6

Рис. 7

Заметим, что зеркало прибора, описанного в книге А. Н. Толстого «Гиперболоид инженера Гарина», является не гиперболоидом, а параболоидом (см. Парабола). Возможно, что название «гиперболоид» А. Н. Толстой выбрал из-за того, что hyperbole в переводе с греческого означает «преувеличение».


ГИПЕРБОЛИЧЕСКИЕ ФУНКЦИИ


Функции, определяемые формулами

sh x = (ex - e-x)/2, ch x = (ex + e-x)/2,

называются соответственно гиперболическим синусом и гиперболическим косинусом. На рис. 1 и 2 приведены графики гиперболических функций. Гиперболический синус – возрастающая функция, нечетная, равная нулю при x=0, положительная при x > 0 и отрицательная при x < 0. Гиперболический косинус – четная функция, в точке x=0 принимает наименьшее значение. При неограниченном возрастании аргумента (x → +∞) обе эти функции очень быстро возрастают. С достаточной степенью точности их можно заменить при больших x просто показательной функцией 1/2 ex.

Рис. 1

Рис. 2

Нетрудно убедиться, что при любых x справедливо следующее равенство:

ch2x - sh2x = 1.

Гиперболические функции обладают многими свойствами, аналогичными свойствам тригонометрических функций, например справедливы следующие формулы:

sh(x+y) = sh x · ch y + ch x · sh y,

ch(x+y) = ch x · ch y + sh x · sh y,

sh 2x = 2sh x · ch x,

ch 2x = ch2 x + sh2 x.


Кроме функций sh x и ch x рассматриваются также гиперболические тангенс и котангенс, которые обозначаются th x и cth x; они определяются по формулам:

; .

Графики этих функций изображены на рис. 3.

Рис. 3

Название свое гиперболические функции получили потому, что они связаны с равнобочной гиперболой x2 - y2 = 1 так же, как функции синус и косинус связаны с единичной окружностью x2 + y2 = 1 (рис. 4 и 5). Если точка M лежит на единичной окружности, то ее абсцисса и ордината соответственно равны s = cos t, y = sin t. Для точки M', лежащей на гиперболе x2 - y2 = 1, абсциссу и ординату можно представить в виде x = ch t, y = sh t. Для окружности t равно углу AOM, но, кроме того, t также равно удвоенной площади сектора AOM. Последнее верно и для гиперболы, т.е. если t равно удвоенной площади гиперболического сектора AOM', то координаты точки M' равны x = ch t и y = sh t.

Рис. 4

Рис. 5

Гиперболические функции находят применение в электротехнике, строительной механике, сопротивлении материалов и др. С помощью гиперболических функций описывается, например, прогиб каната (цепи, проволоки, веревки); такая кривая называется цепной линией.


ГРАФИК


График функции – один из способов ее представления. Представить ту или иную функцию можно по-разному, например словесным описанием. Из физики известно, что при равномерном движении пройденный путь прямо пропорционален времени, прошедшему с момента начала пути. Эта фраза описывает путь как линейную функцию времени.


В руках у электрика можно увидеть таблицу, где для проводов различных диаметров указаны предельно допустимые значения силы тока, на парте школьника – таблицы логарифмов и тригонометрических функций... Все это примеры табличного представления функций. В выкладках и расчетах функции обычно задают с помощью формул.

Перейти на страницу:

Похожие книги