Зарождение еще одного направления в комбинаторной геометрии связано с именем польского математика К. Борсука. Он исходил из интересного результата, полученною венгерским математиком Палом: всякая фигура диаметра d (т. е. фигура, у которой наибольшее расстояние между двумя точками равно d) может быть вмещена в правильный шестиугольник, у которого расстояние между противоположными сторонами равно d (рис. 6). Этот шестиугольник (а вместе с ним и расположенная в нем фигура) может быть разбит на три части, каждая из которых имеет диаметр
Рис. 6
Рис. 7
Рис. 8
Рис. 9
Вот интересная комбинаторная проблема, еще не решенная для пространства. На рис. 10 показано, что параллелограмм можно покрыть четырьмя меньшими параллелограммами, полученными из данного гомотетиями. А иные фигуры – даже тремя меньшими «копиями» (рис. 11). Ясно, что в пространстве надо разрешить иметь восемь меньших «копий»: ведь параллелепипед нельзя покрыть семью меньшими гомотетичными параллелепипедами (поскольку сразу две вершины одной меньшей «копией» не покрываются). Но можно ли любое выпуклое тело в пространстве покрыть восемью меньшими гомотетичными телами? Это неизвестно даже для выпуклых многогранников. Гипотеза швейцарского математика Хадвигера (любое выпуклое тело может быть покрыто 8 меньшими гомотетичными «копиями») еще ждет своего решения.
Рис. 10
Рис. 11
Удивительно, что проблема Хадвигера эквивалентна следующей проблеме, поставленной советским математиком В. Г. Болтянским: какое наименьшее число пучков параллельных лучей нужно взять, чтобы осветить всю границу выпуклого тела? В частности, границу любого ли выпуклого трехмерного многогранника можно осветить восемью параллельными пучками лучей? При этом лучи, проходящие по касательной, как на рис. 12, не считаются освещающими точку касания (т.е. луч, освещающий точку
Рис. 12
Рис. 13
Рис. 14
Рис. 15
ГРАФЫ
Графом в математике называется конечная совокупность точек, называемых вершинами; некоторые из них соединены друг с другом линиями, называемыми ребрами графа.
При взгляде на географическую карту сразу бросается в глаза сеть железных дорог. Это типичный граф: кружочки обозначают станции-вершины графа, а соединяющие их пути – ребра.
Граф на рис. 1 изображает схему дорог между селами
Рис. 1
Расставим вдоль его ребер цифры, обозначающие расстояния между селами, а в конце каждого маршрута напишем сумму этих расстояний по маршруту. Из полученных 24 чисел наименьшими являются два числа по 28 км, соответствующие маршрутам