С помощью параллельного переноса вдоль оси Ox или оси Oy по заданному графику функции y=f(x) можно построить графики функций
Если y=f(x) периодическая функция с периодом T, то достаточно построить часть ее графика для
Графики функций часто используются для приближенного решения уравнений (например,
ГЕОМЕТРИЯ КОМБИНАТОРНАЯ
На рис. 1 каждый из шести кругов имеет общую точку с кругом, расположенным внутри; при этом никакие два круга не имеют общих внутренних точек. А на рис. 2 имеется восемь квадратов, каждый из которых также имеет общую точку с внутренним квадратом (и снова фигуры попарно не имеют общих внутренних точек). А можно ли вокруг некоторой выпуклой фигуры таким же образом расположить девять равных ей фигур, полученных из исходной с помощью параллельного переноса? Ответ отрицателен, хотя доказать это и непросто.
Рис. 1
Рис. 2
Рассмотренный вопрос относится к комбинаторной геометрии новой ветви математики, сформировавшейся лишь в XX в. Она занимается различными задачами, связанными с взаимным расположением нескольких фигур (чаще всего выпуклых), с разрезанием фигур на части, с освещением границы фигуры несколькими источниками света и т. п. При этом всегда ставится экстремальная задача: найти наибольшее число выпуклых фигур, расположенных так, как говорилось выше (рис. 1, 2), найти наименьшее число параллельных световых пучков, освещающих всю границу выпуклого тела (рис. 3), и т. п. Различных постановок комбинаторно-геометрических задач очень много, причем, как правило, они легко формулируются, но решение каждой из них требует огромных усилий.
Рис. 3
В настоящее время в комбинаторной геометрии выделились несколько ведущих направлений. Одним из них является круг задач, связанных с теоремой Хелли (см. Выпуклые фигуры). Например, из теоремы Хелли следует, что для любого набора точек на плоскости, такого, что каждые три его точки можно покрыть кругом радиуса r, найдется такой круг радиуса r, который покроет все эти точки.
Вот еще пример утверждения, которое легко получить из теоремы Хелли. В параллелограмме (или иной центрально симметричной фигуре) имеется такая точка O, что на любой прямой, проходящей через O, высекаются отрезки
Рис. 4
Рис. 5
Теорема Хелли и различные ее обобщения и применения составляют сегодня важный раздел комбинаторной геометрии. Причем применяется она не только в геометрии, но и во многих других областях математики. Например, в прошлом столетии русский математик П. Л. Чебышев установил ряд интересных свойств функций, «наименее уклоняющихся от нуля». А впоследствии оказалось, что свойства этих функций наиболее просто и геометрично выводятся именно с помощью теоремы Хелли.