Читаем Этимологии. Книги I–III: Семь свободных искусств полностью

Поздние пифагорейцы V-IV вв. развивали все эти направления, например теория четных и нечетных чисел приобрела вид положений 21–34 из IX книги «Начал» Евклида, а теория пропорций Евдокса Книдского (ок. 408–355 гг.), ученика Архита, содержится в V книге «Начал». Ги́ппасу из Метапонта (ок. 500 г. н. э.), непосредственному ученику Пифагора, принадлежит открытие иррациональности числа √2, а Феодор Киренский (ум. в 390 г.) и в особенности его ученик, Теэтет Афинский (ок. 420–368 гг.), разработали собственно теорию иррациональных чисел, которую Евклид поместил в X книгу «Начал». Феодор считается автором VII книги «Начал», а Архит Тарентский (430–365 гг.) и его ученики — VIII. Как мы уже отмечали в примечании к Предисловию, пифагорейцы считали именно арифметику базовой математической наукой — теоретическое обоснование этому дал Архит. Школе Архита принадлежит и формулировка замечательного положения, известного как основная теорема арифметики: «Всякое натуральное число раскладывается на простые множители, причем единственным способом (с точностью до их порядка)».

Арифметические работы представителя Хиосской школы Демокрита из Абдер до нас, к сожалению, не дошли.

Достижения этого периода подытожили знаменитые «Начала» Евклида (ок. 365–300 гг.), написанные около 325 г., в которых книги VII-IX посвящены арифметике. В «Началах» изложен и знаменитый алгоритм Евклида по нахождению наибольшего общего делителя двух целых чисел. У Евклида содержится и формула для четных совершенных чисел, а также теорема о бесконечном количестве простых чисел[655].

Однако следующий этап развития греческой математики был связан с вышеупомянутой «геометрической алгеброй». Действительно, при том уровне развития науки число √2 могло быть изображено только как диагональ единичного квадрата. К этому надо было добавить блестяще разработанную (Евклидом и его предшественниками) методику геометрического доказательства. Вместе с тем для арифметики такая позиция представляла известную сложность: например, если квадраты чисел представлялись как геометрические квадраты, а сами числа — как отрезки, то как же тогда представить себе квадратный трехчлен x2+px+q. Как можно сложить отрезок с площадью или кубическое тело с площадью? Кроме того, степени ограничивались кубами. Выходы существовали, но были довольно громоздкими. Поэтому на этом этапе арифметические достижения почти не отличимы от геометрических. Мы будем полагать, что арифметика — наука об операциях над натуральными, целыми и рациональными числами, а к геометрии относить операции над числами иррациональными, равно как и «алгебру» того времени (алгебра в узком смысле этого слова — теория решения уравнений n-й степени с рациональными коэффициентами). Среди математиков того времени, внесших вклад именно в арифметику, можно назвать Архимеда из Сиракуз (ок. 287–212 гг.), точнее его сочинение «Псаммит» («О счете песчинок»). Здесь он показывает, как с помощью существовавшей тогда системы счисления можно выражать сколь угодно большие числа, тем самым опровергая мнение о существовании «самых больших чисел». В качестве примера Архимед использует задачу о вычислении количества песчинок внутри видимой Вселенной и легко показывает, что если бы даже мир до самой сферы неподвижных звезд был заполнен только песком, то количество этих песчинок было бы легко оценить и записать в виде числа. Вообще в своих вычислениях Архимед доходит до числа 108∙10^16. Ему же принадлежит аксиома Архимеда, которую он сам приписывает Евдоксу: «Если две величины не равны, то можно столько раз сложить с собой их разность, чтобы она превзошла любую конечную величину». Еще одним достижением этого великого математика стало вычисление сумм некоторых бесконечных сходящихся рядов (впервые!). Другому математику III в., Эратосфену Киренскому (ок. 282–202 гг.), принадлежит способ отыскания простых чисел через отсеивание всех кратных — так называемое «решето Эратосфена»[656].

В последний, римский, период развития греческой науки, как мы сказали, возрождается интерес к числу как арифметическому объекту.

Уже в работах Герона Александрийского (вероятно, I в. н. э.) намечается поворот к арифметизации при изложении различных вычислительных алгоритмов. Он же впервые решает геометрические задачи через уравнения (в «Геометрике»). Обычно этот поворот объясняют влиянием вавилонской традиции, достигшей своего расцвета на рубеже эр.

Перейти на страницу:

Похожие книги

История бриттов
История бриттов

Гальфрид Монмутский представил «Историю бриттов» как истинную историю Британии от заселения её Брутом, потомком троянского героя Энея, до смерти Кадваладра в VII веке. В частности, в этом труде содержатся рассказы о вторжении Цезаря, Леире и Кимбелине (пересказанные Шекспиром в «Короле Лире» и «Цимбелине»), и короле Артуре.Гальфрид утверждает, что их источником послужила «некая весьма древняя книга на языке бриттов», которую ему якобы вручил Уолтер Оксфордский, однако в самом существовании этой книги большинство учёных сомневаются. В «Истории…» почти не содержится собственно исторических сведений, и уже в 1190 году Уильям Ньюбургский писал: «Совершенно ясно, что все, написанное этим человеком об Артуре и его наследниках, да и его предшественниках от Вортигерна, было придумано отчасти им самим, отчасти другими – либо из неуёмной любви ко лжи, либо чтобы потешить бриттов».Тем не менее, созданные им заново образы Мерлина и Артура оказали огромное воздействие на распространение этих персонажей в валлийской и общеевропейской традиции. Можно считать, что именно с него начинается артуровский канон.

Гальфрид Монмутский

История / Европейская старинная литература / Древние книги