Читаем Этимологии. Книги I–III: Семь свободных искусств полностью

Кроме того, в это время группой энтузиастов начинает возрождаться пифагореизм, правда философское содержание его позаимствовано, в основном, из Платона. Среди неопифагорейских математиков наиболее известен Никомах из Герасы[657] (р. ок. 100 г. н. э.), который пересказывал пифагорейскую математику по Евклидовым «Началам». Но самым знаменитым арифметиком этого направления и вообще последним греческим математиком был Диофант Александрийский (возможно, сер. III в. н. э.), которого, кстати, иногда считают эллинизированным вавилонянином. Он был известен как создатель первого варианта арифметической символики, отрицательных чисел именно как чисел, а также исследованием так называемых «Диофантовых уравнений», то есть алгебраических уравнений с целыми коэффициентами (или систем таких уравнений), для которых требуется нахождение целочисленных решений (например, 3x+5y=7; x2+y2=z2; 3x2+4y3=5z3 и др.). Книга I «Арифметики» Диофанта — первое известное нам изложение основ алгебры.

В последующем все эти научные достижения получили свое развитие не на христианском Западе, а в трудах ученых арабского Востока IX-X вв. н. э. — ал-Хорезми, ал-Баттани, Абу Камила, Ибн ал-Хайсама и других. И уже через посредство испанских и итальянских переводчиков с арабского греческая математика с середины XII в. н. э. стала появляться в Европе. Массовый перевод греческих математических трактатов на латинский и национальные европейские языки был осуществлен только в XVI в. н. э.

V. Геометрия

Давая краткий очерк развития античной геометрии, мы, как и в предыдущем случае, вынуждены ограничиться только общей периодизацией, главными течениями, основными именами с указанием, кто что открыл. Геометрия, действительно, наука более древняя, чем арифметика, но мы полагаем, что упоминание о вездесущих египтянах скорее является штампом, характерным для античной историографии науки, чем отвечает реальному положению дел. Во всяком случае, с именем первого греческого геометра Фалеса Милетского связывают четыре теоремы, не соотносимые с восточной математикой: 1) о том, что диаметр делит круг пополам, 2) что углы при основании равнобедренного треугольника равны («теорема Фалеса»), 3) что накрест лежащие углы при пересечении двух прямых равны, 4) теорему о равенстве треугольников по двум углам и стороне. Все эти факты элементарны и доказываются взаимным наложением соответствующих фигур. Революционность мысли Фалеса и его последователей состояла именно в том, что он стремился найти доказательства для очевидных фактов. И это был первый камень в основание теории дедуктивных доказательств. Предполагается, что к Фалесу восходит часть положений III книги «Начал» Евклида.

Превращение геометрии в теоретическую науку было, по словам историографа математики Евдема Родосского (вт. пол. IV в.), осуществлено Пифагором[658]. Сам Пифагор, надо полагать, доказал теорему, носящую его имя (вероятно, через сложение формул подобия треугольников, получающихся при опускании высоты из прямого угла на гипотенузу), и построил два первых правильных многогранника (тетраэдр и куб). Пифагорейской школе в целом принадлежит: 1) теорема о равенстве суммы углов треугольника двум прямым углам; 2) теорема о замощении плоскости правильными многоугольниками; 3) теория приложения площадей (изложенная в I-II книгах «Начал»; 4) вся IV внига «Начал»; 5) построение всех пяти правильных многогранников (додекаэдр построил Гиппас, а октаэдр и икосаэдр — Теэтет), которая вошла в XIII книгу «Начал»; 6) создание теории иррациональных чисел (Гиппас, Феодор и Теэтет); 7) написание популярного учебника по геометрии еще в сер. V в., содержащего основы первых четырех книг «Начал» (по ван дер Вардену). Первое дошедшее до нас дедуктивное доказательство находится в поэме «О природе» философа Парменида Элейского (540–480 гг.), и, по мысли Т. Гомперца, заимствовано у пифагорейцев, поскольку сам Парменид был учеником этой школы.

Среди математиков Хиосской школы наиболее известен Гиппократ Хиосский (ок. 440 г.), чей трактат «Начала», посвященный проблеме квадратуры круга с помощью луночек, — первое дошедшее до нас математическое сочинение эллинов. Вообще Гиппократ исследовал площади плоских фигур, ограниченных прямыми и кривыми линиями. Другой представитель этой школы, философ и ученый Демокрит из Абдер[659] (470 или 480–380 или 370 гг.), основываясь на своей атомистической философии, заложил основы того, что мы сегодня называем интегральным исчислением: считал объемы призм, конусов и цилиндров, разбивая их по высоте на малые секции.

Перейти на страницу:

Похожие книги

История бриттов
История бриттов

Гальфрид Монмутский представил «Историю бриттов» как истинную историю Британии от заселения её Брутом, потомком троянского героя Энея, до смерти Кадваладра в VII веке. В частности, в этом труде содержатся рассказы о вторжении Цезаря, Леире и Кимбелине (пересказанные Шекспиром в «Короле Лире» и «Цимбелине»), и короле Артуре.Гальфрид утверждает, что их источником послужила «некая весьма древняя книга на языке бриттов», которую ему якобы вручил Уолтер Оксфордский, однако в самом существовании этой книги большинство учёных сомневаются. В «Истории…» почти не содержится собственно исторических сведений, и уже в 1190 году Уильям Ньюбургский писал: «Совершенно ясно, что все, написанное этим человеком об Артуре и его наследниках, да и его предшественниках от Вортигерна, было придумано отчасти им самим, отчасти другими – либо из неуёмной любви ко лжи, либо чтобы потешить бриттов».Тем не менее, созданные им заново образы Мерлина и Артура оказали огромное воздействие на распространение этих персонажей в валлийской и общеевропейской традиции. Можно считать, что именно с него начинается артуровский канон.

Гальфрид Монмутский

История / Европейская старинная литература / Древние книги