Читаем Фейнмановские лекции по гравитации полностью

Должны ли мы всегда волноваться по поводу гравитационного радиуса? Мы написали наши уравнения таким образом, что m(r)=0 в начале координат, и масса увеличивается при увеличении r. Если мы всегда получаем столь большие массы такие, что почти выполняется равенство 2m(r)=r, то наше дифференциальное уравнение (14.1.10г) показывает, что вблизи критического значения величины r величина t должна была бы логарифмически стремиться к -. Таким образом, перед тем, как мы дойдём до такой точки, что температура упала бы до нуля, мы в нашей схеме должны были бы остановиться в этой точке. Тем не менее, численные результаты для массы и радиуса оказываются настолько далёкими от критических значений, что возможно у нас нет нужды в настоящее время беспокоиться по поводу этой проблемы.

14.4. Планы и предположения для дальнейших исследований сверхзвёзд

Имеется другое математическое определение проблемы звёзд, которое может быть пригодно для изучения. Мы получили, что полное число нуклонов в звезде задаётся соотношением


N

=

4

r

0


sr^2dr

1-2m/r

,


(14.4.1)


где


m

=

4

r

0

dr'

r'^2

,


и плотность =(s) известна через постулированное уравнение состояния, такое как наш ”адиабатический” закон


s

d

s

=

p

+

.


(14.4.2)


Задача определения равновесия состоит в том, чтобы определить конфигурацию с минимальной массой, исходя из заданного числа нуклонов. Мы можем получить такую же информацию, фиксируя значение массы и задавая вопрос о максимальном значении нуклонов. Математическая формулировка состоит в вариационном дифференциальном функциональном уравнении


N

s(r)

=

0.


(14.4.3)


Если мы справляемся с решением этого уравнения, мы получаем экстремальные решения s(r). Весьма приятно для меня чувствовать, что даже очень сложные проблемы пытаются выглядеть просто, будучи выраженными на языке соответствующим образом выбранных принципов! Мы найдём решения с минимальной массой, если экстремум N[s(r)] действительно является максимумом.

После того, как у нас будут исследованы статические решения, мы можем обратить наше внимание к полной динамической задаче. Дифференциальные уравнения выглядят устрашающе. По мере того, как мы рассматриваем их чудовищно сложную структуру и начинаем делать сравнения с классическим пределом, значение многих членов становится более очевидным. В наипростейшем случае газовой динамики уравнения описывают распространение звука в неоднородной среде; это нелинейный звук, так что в среде могут образовываться ударные волны и т.д. Не вызывает удивления то, что объект нашего исследования настолько сложен. Наиболее простая модель исследований может касаться небольших колебаний в окрестности статических решений; действительные частоты обозначали бы то, что наши предыдущие решения, однажды сформировавшись, были бы на самом деле устойчивыми, и мнимые частоты говорили бы нам о том, что наши решения были бы неустойчивыми.

Усовершенствованные вычисления нуждаются также в лучших выражениях для "физической” стороны уравнений. Что происходит, если мы учитываем испускание нейтрино из центра звезды? Будет ли происходить падение вещества к центру в этом случае или происходит что-либо другое? В случае, когда звезда является в большой степени релятивистской, тогда эти нейтрино могут уносить большую часть полной энергии и, таким образом, могут привести к существенному уменьшению гравитационного притяжения. Классическая теория звёзд основана на довольно прочном основании, когда масса покоя частиц определяет почти полностью значение энергии. В этом случае уносящаяся из центра звезды энергия приводит к дальнейшему коллапсу, что ведёт к тому, что центр звезды становится горячее. Если центр становится горячее, то ядерные реакции доставляют больше энергии, которая должна быть унесена, чтобы звезда осталась устойчивой. Если же центр становится настолько горячим, что горение ядерного топлива производит энергии больше, чем может быть унесено из звезды, ситуация становится неустойчивой и звезда взрывается. В сильно релятивистском случае, тем не менее, новые качественные признаки начинают появляться, когда энергия излучения составляет большую часть полной массы. Здесь, когда центр звезды ”охлаждается” потерей энергией, энергия, соответствующая притяжению звезды, становится меньше, поскольку существенная часть массы уносится. Таким образом, может быть так, что для достаточно большой массы, может не быть процессов, приводящих ко взрыву.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука