Однако Чжао и Фаерштейн превратили проблему в решение. Поскольку гены обонятельных рецепторов экспрессируются только в обонятельных нейронах, исследователи решили использовать именно обонятельные нейроны для усиления экспрессии одного гена рецептора, чтобы определить диапазон связывания. Они заразили эпителий крысы вирусом, несущим один выделенный ген рецептора. Эта инфекция привела к усилению экспрессии одного специфического гена, что увеличило долю этого рецептора в эпителии с 1 % до 30 %. В результате любой лиганд, который возбуждал этот рецептор (теперь его называют крысиным обонятельным рецептором I7), приводил к непропорционально сильному ответу, что позволило определить диапазон связывания[124]
. Эксперимент подтвердил идею. Но процедура была слишком трудоемкой и длительной, чтобы применить ее к тысяче с лишним генов и сотням тысяч лигандов. Экспрессия рецепторов до сих пор остается трудным делом. Хироаки Мацунами из Дьюкского университета, который раньше работал с Бак, впервые добился гетерологичной экспрессии рецепторов запаха только в 2011 году[125]. Мацунами интересовался деорфанизацией рецепторов (определением того, с какими молекулами запаха взаимодействует конкретный рецептор). А в 2014 году Джоэль Мейнленд в Центре химических чувств Монелла усовершенствовал метод Мацунами для осуществления первой экспрессии генов человеческих обонятельных рецепторов[126]. Надежда на расшифровку кода запахов ослабела, но не исчезла.А вскоре стало понятно другое. Кодирование рецепторов носового эпителия отличалось от процессов в сетчатке: для начала там не работал принцип «центр-периферия». Кроме того, было непонятно, как могла бы выглядеть «карта запахов», аналогичная ретинотопической карте. В конечном итоге предположение о существовании «карты запахов» в эпителии так никогда и не подтвердилось. Поначалу в 1993 году Бак и Керри Ресслер обнаружили в эпителии некое подобие зон с разной экспрессией генов[127]
. Однако в отличие от участков «центр-периферия» в зрительной системе, наличие таких зон не обеспечивало возникновение дискретных пространственных картин связывания рецепторов.Быть может, карта формировалась на более поздних этапах? Очевидным кандидатом была обонятельная луковица – следующий пункт обонятельного пути. Кахаль уже выдвигал такое предположение: «Тщательное сравнение структуры, расположения и связей означенных [обонятельных] центров с аналогами в зрительной, тактильной и акустической системах позволяет признать, что
Чтобы понять, что имел в виду Кахаль, давайте еще раз заглянем в глаз. В отличие от обонятельной информации, зрительная информация проходит через многочисленные синаптические связи и многие слои нейронов разных типов, пока не достигнет коры мозга. Только в сетчатке мы видим три слоя чувствительных нейронов, причем каждый выполняет особую функцию. В частности, в сетчатке есть два типа рецепторных клеток и четыре типа нейронов: биполярные, ганглионарные, горизонтальные и амакриновые клетки. В первом слое в глубине сетчатки мы различаем два типа рецепторных клеток: палочки и колбочки. Палочки имеют вытянутое строение, содержат пигмент одного вида и реагируют на переменное освещение (в том числе с низкой интенсивностью). Они отвечают за ночное видение. Колбочки значительно толще и обычно содержат пигменты одного из трех видов, которые резонируют со светом высокой интенсивности и облегчают цветовое зрение.
За этим первым слоем специализированных рецепторных клеток идет второй слой биполярных и горизонтальных клеток. Информация от нескольких рецепторных клеток собирается горизонтальными клетками и передается вытянутым биполярным клеткам, которые также могут принимать входной сигнал напрямую от клеток сетчатки.
В третьем слое сферические ганглионарные клетки сетчатки продолжают собирать информацию от биполярных клеток, а затем отсылать ее из сетчатки по зрительному нерву. Слой амакриновых клеток, аналогичных горизонтальным клеткам, частично служит посредником при передаче информации между биполярными и ганглионарными клетками. Задача такой многоэтапной обработки информации – в улучшении разрешения рецептивных полей, причем при передаче сигнала сохраняется структура «центр – периферия». Прогулка по такому многовидовому лесу взаимосвязанных клеток позволяет дополнительно оценить простоту обонятельной системы, содержащей всего два синапса.