Читаем Фрактальная геометрия природы полностью

В более общем виде, динамическую систему принято определять следующим образом: состояние системы в момент времени t представляется точкой σ(t) на прямой, в плоскости, либо в некотором более многомерном евклидовом «фазовом пространстве» E, а ее эволюция между моментами tи t+Δt определяется правилами, в которые величина t явным образом не входит. Любую точку в фазовом пространстве можно принять за начальное состояние σ(0) при t=0, а за ней последует орбита, определяемая функцией σ(t) для всех t>0.

Основное различие между такими системами заключается в геометрическом распределении значений σ(t) при больших значениях t. Принято говорить, что динамическая система имеет аттрактор, если существует некое правильное подмножество A фазового пространства E, обладающее следующим свойством: при почти любой начальной точке σ(0) и достаточно большом t точка σ(t) оказывается в малой окрестности какой-либо точки, принадлежащей A.

ПОНЯТИЕ РЕПЕЛЛЕРА

Мы можем также поместить наш шарик в положение неустойчивого равновесия – например, на кончике карандаша. Если начальное положение не совпадает в точности с точкой равновесия, то шарик словно отталкивается прочь и достигает состояния устойчивого равновесия где-то в другом месте.

Множество всех положений неустойчивого равновесия (вместе с их предельными точками) называется отталкивающим множеством, или репеллером.

Во многих случаях аттракторы и репеллеры меняются местами при смене знаков в уравнениях. Имея дело с силой тяжести, достаточно изменить направление ее действия. Рассмотрим, например, в основном горизонтальную поверхность с прогибами в обоих направлениях. Предположим, что сила тяжести направлена вниз, поместим шарик на верхней стороне поверхности и обозначим притягивающий прогиб буквой A, а отталкивающий – буквой R. Если теперь поместить шарик на нижней стороне поверхности и предположить, что сила тяжести направлена вверх, то прогибы A и R поменяются местами. В этой главе такие обмены играют центральную роль.

ФРАКТАЛЬНЫЕ АТТРАКТОРЫ. «ХАОС»

Бóльшая часть элементарной механики имеет дело с динамическими системами, аттракторами которых являются точки, почти окружности и другие фигуры евклидовой геометрии. Однако в действительности такие фигуры представляют собой редкие исключения, и поведение большинства динамических систем несравнимо более сложно: их аттракторы и репеллеры имеют явную тенденцию к фрактальности. В нескольких следующих разделах описываются примеры систем с дискретным временем, Δt=1.

Аттрактор-пыль. Коэффициент Фейгенбаумаα. Простейший пример можно получить с помощью возведения в квадрат (см. главу 19). В качестве вступления рассмотрим еще одно представление канторовой пыли C: N=2, R<1/2, охватываемый интервал [−r/(1−r),r/(1−r)]. Такое множество C является пределом множества Cn, определяемого как множество точек вида ±r±r2±...±rn. При n→n+1, каждая точка множества Cn разделяется на две, а множество C представляет собой результат бесконечного количества таких бифуркаций.

Согласно П. Грассбергеру (источник – препринт статьи), аттрактор Aλ отображения x→λx(1−x) при вещественных λ аналогичен множеству Cn, но с двумя различными коэффициентами подобия, одним из которых является коэффициент Фейгенбаума 1/α~0,3995 (см. [144]). После бесконечного количества бифуркаций этот аттрактор превращается во фрактальную пыль A с размерностью D~0,538.

«Хаос». Ни одна точка множества A за конечный промежуток времени не посещается дважды. Многие авторы описывают эволюции на фрактальных аттракторах как «хаотические».

Самоаффинные деревья. Расположив множество Aλ в плоскости (x,λ), получим дерево. Поскольку δ=4,6692≠α, это дерево асимптотически самоаффинно с остатком.

Комментарий. В идеале теории следовало бы сосредоточиться на интересных по своей сути и реалистичных (но простых) динамических системах, аттракторами которых являются подробно изученные фрактальные множества. Имеющаяся же литература по странным аттракторам – пусть даже она чрезвычайно значима – весьма далека от этого идеала. Рассматриваемые в ней фракталы, как правило, недостаточно хорошо изучены, очень немногие из них действительно интересны, а большинство никак нельзя считать решениями сколь бы то ни было мотивированных задач.

Поэтому я был вынужден самостоятельно изобретать «динамические системы», которые бы поставили новые вопросы – для того, чтобы получить на них давно известные и удобные ответы. Я придумывал задачи таким образом, чтобы их решениями стали знакомые фракталы. Больше всего меня удивляет то, что эти системы оказались еще и интересными.

САМОИНВЕРСНЫЕ АТТРАКТОРЫ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература