Читаем Фрактальная геометрия природы полностью

Генератор случайных чисел – поворотный момент в любом моделировании. До него выполняются одинаковые для всех случаев операции, связанные с наведением мостов между теорией чисел и теорией вероятности и никак не зависящие от конкретной программы. Эти операции представляет собой типичные образчики детерминированных преобразований, имитирующих случайность согласно предписаниям теории вероятности. После генерации случайных чисел следуют специфичные для каждого случая шаги, соответствующие целям и задачам данного конкретного моделирования.

Вполне естественным представляется переход от вышеописанных практических материй к полноценной рекурсивной вероятности. Главная перемена при этом заключается в замене дробей с конечным числом знаков вещественными числами. В роли затравок теперь выступают какие-то таинственные «элементарные события», которые в математике вероятности обозначаются буквой ω. Для «интерпретации» ω в виде бесконечной последовательности Пейли и Винер [461] предлагают использовать обратную канторову диагонализацию.

ТЩЕТНОЕ ВЗЫВАНИЕ К СЛУЧАЙНОСТИ И ДЕЙСТВИТЕЛЬНОЕ ОПИСАНИЕ

Из предыдущего раздела можно сделать вывод, что теория случайности не так уж и сложна. К сожалению, она и не так проста. Может даже закрасться мысль о том, что для построения модели береговых линий, свободной от недостатков, присущих кривой Коха, но сохраняющей ее достоинства, достаточно случайным образом деформировать различные участки кривой и изменить их размеры, а затем вновь сцепить их вместе в случайном порядке.

Подобное взывание к случайности позволительно разве что в предварительных исследованиях, каковым позволением мы вволю попользовались в некоторых ранних главах настоящего эссе. Это не порок, если конечно, сам факт такого взывания ясно осознается автором и не скрывается от читателя. В некоторых случаях оно даже может быть реализовано при моделировании. В других же случаях одно лишь искусственное насаждение случайности есть не более чем пустой жест. Безусловно, описание правил, которые порождают приемлемые случайные кривые, представляет собой очень нелегкую задачу, так как геометрические множества всегда вложены в пространство. Одним лишь случайным изменением форм, размеров и порядка участков береговой линии можно добиться только получения бесполезного набора элементов, которые никакими стараниями не удастся увязать в цельную картину.

НЕОГРАНИЧЕННАЯ И САМООГРАНИЧЕННАЯ СЛУЧАЙНОСТЬ

Итак, мы с вами обнаружили неформальный отличительный признак огромный практической значимости. Иногда наш контроллер, управляющий действиями процессора, волен запускать новые циклы, не утруждая себя проверкой результатов предыдущих циклов и не опасаясь при этом какого бы то ни было рассогласования. Можно сказать, что такие модели имеют дело с неограниченной формой случайности. В других моделях поздние этапы построения, так или иначе, ограничены результатами предыдущих этапов и/или/ случайность самоограничена геометрией пространства.

Поясним это различие на примерах. Возьмем такую несложную задачу из комбинаторики, как построение на плоской решетке некоторого количества 2n- угольников с возможностью самопересечений. Генерацию таких многоугольников вполне можно поручить модели с ничем не ограниченной случайностью. Однако береговые линии самопересекаться не могут, и подсчет количества полигональных аппроксимаций береговой линии представляет собой задачу с сильно самоограниченной случайностью – задачу, решение которой до сих пор успешно ускользает и от лучших умов.

Так как задачи, связанные с самоограниченной случайностью, весьма сложны, в настоящем эссе они почти не затронуты (исключение составляет глава 36).

ГИПЕРБОЛИЧЕСКИЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Неравномерная случайная величина X представляет собой всего лишь значение монотонной неубывающей функции x=F−1(u). Обратная функция U=F(x) называется вероятностью Pr(X. (Что касается разрывов в функциях F(x) и F−1(u), то они требуют очень тщательно продуманных формулировок.)

В главах 6, 13 и 14 мы использовали в рассуждениях выражение Nr(U>u)∝u−D. Его вероятностный аналог Pr(U>u)∝u−D называется гиперболическим распределением и фигурирует во многих последующих главах эссе. Свойство Pr(U>0)=∞ весьма любопытно, но ни в коем случае не является поводом для паники. Оно оказывается столь же желательным и легкоусвояемым, как и свойство Nr(U>0)=∞ в главе 13. Обращаться с ним все же следует осторожно, однако технические подробности нас в данный момент не занимают, поэтому мы их опустим.

ТИПИЧЕСКИЕ РАЗМЕРНОСТИDИDTСЛУЧАЙНЫХ МНОЖЕСТВ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература