Читаем Фрактальная геометрия природы полностью

Понятие размерности случайного множества несколько отличается от того, к какому мы привыкли. В нашем «большом портфеле», объединяющем некоторую совокупность случайных множеств, каждая страница соответствует какому-либо множеству и, следовательно, имеет собственные значения D и DT, закрепленные именно за данным множеством. Эти значения меняются от одного образца (или страницы) к другому, но во всех рассматриваемых нами случаях их распределение остается простым.

Существует некоторое количество образцов с отклонениями («дефектных семян»), размерность D которых может принимать какие угодно значения, однако совокупная вероятность их проявления стремится к нулю. Все остальные множества характеризуются некоторым общим значением D, называемым «почти истинным значением».

Я полагаю, что вышесказанное верно и для DT, и надеясь, что эта тема привлечет внимание математиков.

Почти истинные значения являются во всех отношениях «типичными» для данной совокупности множеств. Например, ожидаемое значение D оказывается равным почти истинному.

С другой стороны, следует даже в мыслях избегать отождествления этого значения с размерностью некоего «среднего» для данной совокупности множества. Давайте, к примеру, представим себе картину симметричного случайного блуждания и попробуем определить среднее блуждание. Если оно представляет собой процесс, при котором каждое последующее положение является средним от соответствующих положений всей совокупности блужданий, то такое среднее блуждание «нигде не блуждает»: точке так и не удается покинуть свое исходное положение. Следовательно, D=0, тогда, как нам известно (см. главу 25), что почти для всех случайных блужданий D=2. Единственным средним множеством, которое мы можем признать «безопасным» в смысле размерности, является множество, характеризуемое средним для всей совокупности значением D; безопасность этого определения - в его цикличности.

Для оценки размерности D случайного фрактала сгодится любой метод, применяемый к неслучайным фракталам. Следует, однако, помнить о предупреждении, сделанном в главе 13: если часть фрактального множества, заключенная внутри шара радиуса R с центром внутри множества, стремится обладать мерой («массой»), удовлетворяющей соотношению M(R)∝RQ, то Q не обязательно является размерностью.

22 УСЛОВНАЯ СТАЦИОНАРНОСТЬ И КОСМОГРАФИЧЕСКИЕ ПРИНЦИПЫ

Пересказывая в предыдущей главе общеизвестные доводы в пользу случайности, я не делал каких-либо различий между стандартными и фрактальными моделями. В стандартные модели рандомизация привносит значительные улучшения, однако и неслучайные модели остаются во многих отношениях вполне приемлемыми. В этой главе я намерен показать, что действительно рабочей фрактальной модели без случайности не обойтись.

ИНВАРИАНТНОСТЬ ПРИ СДВИГАХ. СИММЕТРИЯ

Для дальнейших рассуждений нам понадобится понятие симметрии в его древнем философском смысле. Под симметрией мы будем понимать не «зеркальную» симметрию относительно оси, а сочетание оригинального значения греческого слова συμμετρια, которое можно передать как «следствие соразмерности различных составных частей и целого» (см. [590]), и значения, принятого в современной физике, исходя из которого, симметрия становится синонимом инвариантности.

Самым существенным недостатком неслучайных фракталов является их недостаточная симметричность. Первые же направленные в их сторону упреки, выраженные в терминологии самых различных наук, указывали на невозможность построить неслучайный фрактал, инвариантный при сдвигах (т.е. стационарный), и, как следствие, на несоответствие неслучайных фракталов космологическому принципу.

Во-вторых, неслучайный фрактал не может быть однородно масштабно-инвариантным – в том смысле, что он допускает лишь дискретную последовательность коэффициентов подобия вида rk.

Проблема образования скоплений галактик настолько важна, что я решил построить наше теперешнее обсуждение именно вокруг нее – это эссе уже во второй раз вносит свой вклад в развитие астрономии.

КОСМОЛОГИЧЕСКИЙ ПРИНЦИП

Постулат, согласно которому настоящее время и наше положение на Земле не является ни центральным, ни сколько-нибудь особенным, а законы Природы должны быть одинаковы всегда и везде, называется космологическим принципом.

Это утверждение, формализованное А. Эйнштейном и Э. А. Милном (см. [445], с. 157), подробно обсуждается в [43].

УСИЛЕННЫЙ КОСМОГРАФИЧЕСКИЙ ПРИНЦИП

Применяя космологический принцип во всей его первозданной мощи, можно потребовать, чтобы распределение материи всегда подчинялось в точности идентичным законам, независимо от системы отсчета (т.е. от начала координат и координатных осей), в которой производилось наблюдение. Иными словами, распределение должно быть инвариантным при сдвигах.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература