Читаем Фрактальная геометрия природы полностью

Таким образом, несмотря на то, что случайность продолжает вызывать в людях всевозможные квазиметафизические порывы, в данном эссе нас мало заботит (позаимствуем цитату из Эйнштейна), «играет ли Господь Бог с нами в кости». Теория вероятности – единственный доступный нам математический инструмент, с помощью которого мы можем составить хоть какую-нибудь карту непознанного и неуправляемого. К нашему счастью, инструмент этот чрезвычайно мощен и удобен, хотя порой и норовист.

ОТ РЕКУРСИВНОСТИ К СЛУЧАЙНОСТИ

Кроме того, теория вероятности отлично сочетается с рекурсивными методами, преобладающими в этом эссе. Иными словами, вторая половина эссе следует за первой без нарушения непрерывности. Мы и далее будем фокусировать наше внимание на прецедентах, обладающих следующей особенностью: и их математическое определение, и графический алгоритм допускают запись в виде некоторой «обрабатывающей программы», содержащей внутреннюю петлю, причем каждый проход этой петли добавляет новые детали к тому, что было получено при предыдущих проходах.

Знакомая нам петля, порождающая троичную кривую Коха, легко представима в виде такой обрабатывающей программы. Однако другие неслучайные фракталы требуют дополнительной «управляющей программы», значимость которой нам следует сейчас подчеркнуть. Ее функции неуклонно – хотя и весьма занятным образом – эволюционируют в сторону большего обобщения. Первый этап этой эволюции: некоторые генераторы Коха (как нам известно из пояснения к рис. 79) можно применять в двух вариантах, прямом (S) или обратном (F), то есть их обрабатывающая программа нуждается в каком-нибудь контроллере, который будет сообщать ей перед началом каждой следующей петли, какой генератор применять - S или F. В общем же можно сказать, что различные управляющие последовательности порождают различные фракталы. Следовательно, при каждом последующем выборе величины M и соответствующей ей размерности D фрактальная петля с рис. 79 представляет собой в действительности не одну кривую, но бесконечное (счетное) семейство кривых – по одному семейству на каждую управляющую последовательность. Контроллер может либо считывать эту последовательность с какого-нибудь носителя, либо интерпретировать некоторую компактную инструкцию вида «чередовать S и F» или «применять на - м этапе генератор S (или F), если - й знак в десятичной записи числа π является четным (или нечетным)».

СЛУЧАЙНОСТЬ / ПСЕВДОСЛУЧАЙНОСТЬ

Многие случайные фракталы строятся по точно такой же схеме: интерпретирующий контроллер + процессор. Этот факт часто оказывается неочевиден (иногда с целью создания впечатления большей сложности), однако в рассматриваемых нами прецедентах, определяемых явной рекурсией, он прямо-таки бросается в глаза.

Простейший контроллер называется «последовательность бросков симметричной монеты», однако я никогда его не использовал. Современное компьютерное изобилие предоставляет в наше распоряжение другой контроллер – «генератор случайных чисел». На его вход подается так называемая затравка – некоторое целое число с заданным количеством двоичных знаков M. (Значение M определяется спецификой используемого оборудования; если ввести меньше, чем M знаков, то вакантные места заполняются слева нулями.) На выходе контроллера мы получаем некую последовательность из нулей и единиц. При моделировании игры Бернулли каждый знак выступает в роли результата броска симметричной монеты. А игра, состоящая из 1 000 бросков монеты, представляет собой в действительности последовательность из 1 000 отдельных псевдослучайных знаков.

Можно, однако, предположить, что где-то существует большая книга из 21000 страниц, в которой записаны все возможные результаты игры из 1 000 бросков, причем каждый результат на отдельной странице. Таким образом, становится возможным указать любую конкретную игру, просто выбрав соответствующую страницу из этой книги. Параметром случайности в этом случае является номер страницы, т.е. затравка.

Вообще говоря, число на выходе контроллера часто разбивается на цепочки, состоящие из A целых чисел. Поставив перед каждой такой цепочкой десятичную запятую, получим набор дробей U, каждая из которых называется «случайной величиной, равномерно распределенной в интервале от 0 до 1.

На выходе генератора реального случайного множества получается не единичная функция или фигура, но этакий «большой портфель» из 2A страниц, каждая из которых посвящена отдельной фигуре. Номер страницы и здесь выступает в роли затравки.

Затравки одного вида, как и одинаковые семена, порождают схожие структуры. Разумеется, среди семян попадаются и дефектные, прорастающие в весьма нетипичные растения, однако мы вполне можем ожидать, что подавляющее большинство растений, полученных из семян одного вида, окажутся похожими в главном, допуская при этом некоторые различия в деталях.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература