Таким образом, несмотря на то, что случайность продолжает вызывать в людях всевозможные квазиметафизические порывы, в данном эссе нас мало заботит (позаимствуем цитату из Эйнштейна), «играет ли Господь Бог с нами в кости». Теория вероятности – единственный доступный нам математический инструмент, с помощью которого мы можем составить хоть какую-нибудь карту непознанного и неуправляемого. К нашему счастью, инструмент этот чрезвычайно мощен и удобен, хотя порой и норовист.
ОТ РЕКУРСИВНОСТИ К СЛУЧАЙНОСТИ
Кроме того, теория вероятности отлично сочетается с рекурсивными методами, преобладающими в этом эссе. Иными словами, вторая половина эссе следует за первой без нарушения непрерывности. Мы и далее будем фокусировать наше внимание на прецедентах, обладающих следующей особенностью: и их математическое определение, и графический алгоритм допускают запись в виде некоторой «обрабатывающей программы», содержащей внутреннюю петлю, причем каждый проход этой петли добавляет новые детали к тому, что было получено при предыдущих проходах.
Знакомая нам петля, порождающая троичную кривую Коха, легко представима в виде такой обрабатывающей программы. Однако другие неслучайные фракталы требуют дополнительной «управляющей программы», значимость которой нам следует сейчас подчеркнуть. Ее функции неуклонно – хотя и весьма занятным образом – эволюционируют в сторону большего обобщения. Первый этап этой эволюции: некоторые генераторы Коха (как нам известно из пояснения к рис. 79) можно применять в двух вариантах, прямом
СЛУЧАЙНОСТЬ / ПСЕВДОСЛУЧАЙНОСТЬ
Многие случайные фракталы строятся по точно такой же схеме: интерпретирующий контроллер + процессор. Этот факт часто оказывается неочевиден (иногда с целью создания впечатления большей сложности), однако в рассматриваемых нами прецедентах, определяемых явной рекурсией, он прямо-таки бросается в глаза.
Простейший контроллер называется «последовательность бросков симметричной монеты», однако я никогда его не использовал. Современное компьютерное изобилие предоставляет в наше распоряжение другой контроллер – «генератор случайных чисел». На его вход подается так называемая затравка – некоторое целое число с заданным количеством двоичных знаков
Можно, однако, предположить, что где-то существует большая книга из
Вообще говоря, число на выходе контроллера часто разбивается на цепочки, состоящие из
На выходе генератора реального случайного множества получается не единичная функция или фигура, но этакий «большой портфель» из
Затравки одного вида, как и одинаковые семена, порождают схожие структуры. Разумеется, среди семян попадаются и дефектные, прорастающие в весьма нетипичные растения, однако мы вполне можем ожидать, что подавляющее большинство растений, полученных из семян одного вида, окажутся похожими в главном, допуская при этом некоторые различия в деталях.