Читаем Фрактальная геометрия природы полностью

Предварительный этап не зависит от величины D и заключается в присвоении каждому вихрю (неважно какого порядка) некоторого случайного числа U из интервала от 0 до 1. Из главы 21 нам известно, что все эти числа, взятые в совокупности, эквивалентны одному – единственному числу, которое служит мерой вклада случайности в данный процесс. Далее выбираем значение D и определяем из последней записанной нами формулы порог вероятности p. Наконец, происходит собственно створаживание посредством, если можно так выразиться процесса «фрактальной децимации». При U>p вихрь «умирает», переходя в простоквашу и унося с собой все свои субвихри. Если же U≤p, то вихрь можно считать выжившим и готовым к дальнейшему створаживанию.

Этот метод позволяет представлять все характеристики творога, простокваши и всех остальных интересующих нас множеств в виде функций от непрерывно изменяющейся размерности. Достаточно зафиксировать случайные числа U, уменьшая при этом значение p от 1 до 0, и мы получим размерность D, уменьшающуюся от 3 до 0.

Пусть даны твороги Q1 и Q2, соответствующие вероятностям p1 и P21 и имеющие размерности D1 и D21. Тогда преобразование Q1 в Q2⊂Q1 можно назвать «относительной фрактальной децимацией» и охарактеризовать относительной вероятностью p2/p1 и относительной размерностью D2−D1. Для того, чтобы произвести относительную децимацию вручную, следует разыскать вихри со стороной 1/b, принадлежащие множеству Q1, и определить их дальнейшую жизнь вероятностью p2/p1. Затем поступаем аналогичным образом с выжившими вихрями (длина стороны 1/b2) и т.д. Относительные вероятности в получающемся путем последовательных децимаций ряду Q1,Q2,...,Qg перемножаются, а относительные размерности складываются ... до тех пор, пока значение суммы не становится отрицательным, а множество Q - пустым.

СТВОРАЖИВАНИЕ ГАЛАКТИК ПО ХОЙЛУ

У ограниченного створаживания имеется пространственный аналог, который можно использовать при геометрической реализации творожной модели распределения галактик, предложенный Хойлом (см. рис. 310 и 311).

Рис. 310 и 311. Реализация модели Хойла (размерность D=1) с использованием случайного створаживания на решетке


Основой модели Хойла (см. главу 9) является газовое облако очень низкой плотности, которое в результате последовательных сжатий образует скопление галактик, затем собственно галактики и т.д. Однако описание Хойла страдает чрезвычайной схематичностью, поэтому реальное геометрическое воплощение его модели требует некоторых специальных допущений. На рисунках показаны проекции простейшего такого воплощения на плоскость.

Рис. 311. В качестве инициатора выступает куб со стороной 1, который на первом этапе каскада разделяется на 53=125 подкубов со стороной 5−1; далее процедура повторяется, и на k - м этапе мы получаем уже 125k подкубов k - го порядка, длина стороны каждого из которых равна 5−k, и при этом содержащееся в любом из подкубов (k−1) - го порядка вещество, сжимаясь, образует набор из 5 подкубов k - го порядка, который мы будем называть k - предтворогом. Створаживание по Хойлу всегда понижает размерность D с 3 до 1.

На этом рисунке вы можете видеть первые три этапа каскада, совмещенные друг с другом, причем более темный оттенок серого символизирует бóльшую плотность газа. В сравнении с рисунком, приведенным в [230] (с. 286), наша картинка может показаться приближенной. Это не так: рисунок выполнен с очень тщательным соблюдением масштаба, поскольку вопросы, связанные с размерностью, требуют точности.

Ввиду того, что мы представляем здесь плоскую проекцию трехмерного творога, нередко случается так, что два куба проецируются в один квадрат. Однако в пределе совпадения проекций двух точек практически исключены. Образующаяся пыль настолько разрежена, что пространство, в сущности, остается прозрачным.

Рис. 310. Здесь показан только четвертый этап каскада (с другой затравкой). Лежащая в основе построения решетка практически не прослеживается, и это хорошо, поскольку в природе мы никаких решеток не наблюдаем (см. главу 27). Верхний участок вихря, обрезанный краем страницы, в настоящем примере пуст.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература