Читаем Фрактальная геометрия природы полностью

Регулирование лакунарности. Понятие лакунарности, представленное в главе 34, непосредственно применимо к створаживанию на прямой и к створаживанию по Хойлу. Если у Хойла заменить N=5 «реальным» значением Фурнье N=1022 (см. рис. 141), то лакунарность случайного творога становится очень и очень малой.

СТВОРАЖИВАНИЕ В МОДЕЛИ ТУРБУЛЕНТНОГО РАССЕЯНИЯ НОВИКОВА – СТЮАРТА

Пространственное случайное створаживание можно наблюдать и в одной очень ранней модели перемежаемости турбулентности. Новиков и Стюарт [451] предполагают, что пространственное распределение рассеяния генерируется каскадным процессом: в начале каждого этапа берется предтворог предыдущего этапа и створаживается дальше, давая в результате N меньших в r раз частей. См. рис. 312 – 315.

Эта модель очень приблизительна, она даже грубее модели, предложенной в [21] для описания определенных избыточных шумов (см. главы 8 и 31). Она почти не привлекла к себе сколько-нибудь благосклонного внимания, ее никто не исследовал и не разрабатывал. Однако такое пренебрежительное отношение лишено всяких оснований. Мои исследования показывают, что в створаживании, согласно этой модели, уже присутствовали многие черты, характерные для более совершенных и более сложных современных моделей.

Рис. 312 – 315. Случайный творог Новикова – Стюарта на плоской решетке (размерности от D=1,5936 до D=1,9973) и перколяция


Каскад Новикова – Стюарта дает полезное общее представление о том, каким образом турбулентное рассеяние в жидкости приходит в итоге к относительно малому объему. Концептуально он очень похож на каскад Хойла, проиллюстрированный на предыдущих рисунках; Однако между фрактальными размерностями D получаемых в пределе этих каскадов множеств имеется значительное различие. Размерность распределения галактик близка к единице, тогда как в турбулентности D>2, причем хорошим приближением считается значение в интервале от 2,5 до 2,6. Для более общего понимания процесса створаживания на рисунках представлены примеры с различными размерностями. Во всех примерах r=1/5, а N принимает следующие значения:

N=5×24, N=5×22, N=5×19, N=5×16 и N=5×13.

Размерности же, соответственно, равны:

D=1+ln24/ln5=2,9973; D=2,9426, D=2,8505, D=2,7227 и D=2,5936.

Сыворотка изображается серым цветом, а творог черным или белым. Белая область представляет собой перколяционный контактный кластер, т.е. вы можете, двигаясь только по белому, пройти от нижнего края рисунка до верхнего. Черным цветом представлены все остальные контактные кластеры.

Так как размерность турбулентности больше 2, твороги эти, в сущности, непрозрачны, а на рисунках показаны (в отличие от творогов Хойла) их плоские сечения со следующими размерностями:

D=1,9973, D=1,9426, D=1,8505, D=1,7227 и D=1,5936.

Правый нижний угол рис. 312 отведен под пример с размерностью D~1,9973, не представляющий большого интереса, остальная часть рисунка иллюстрирует случай D~1,9426.

Порождающая программа и затравка одинаковы для всех примеров, и мы можем проследить постепенное исчезновение серых пятен по мере увеличения размерности. Для начала возьмем 25 субвихрей любого вихря и наложим их случайным образом друг на друга. Серыми окажутся 25−N верхних субвихрей, где N=5D.

В двух примерах с наименьшими размерностями перколяции не происходит. При N=19 на рисунке остается несколько черных пятен и появляется много белых. Некоторые затравки перколируют уже при N=18. Однако на иллюстрациях показан слишком ранний этап каскада, чтобы можно было делать достоверные оценки порога Dкрит.

Сыр. Образ, стоящий за термином створаживание (равно как и за термином сыворотка, обозначающим дополнение творожного множества), не следует, разумеется, воспринимать буквально, однако известно, что образование реального сыра может быть вызвано биохимической нестабильностью – точно так же, как створаживание Новикова – Стюарта происходит, согласно предположению, вследствие нестабильности гидродинамической. Как бы то ни было, неопровержимых данных в пользу того, что какой-нибудь съедобный сыр может оказаться, ко всему прочему, еще и фрактальным, у меня нет.

СЛЕДСТВИЯ «ПРОМЕЖУТОЧНОСТИ» СЛУЧАЙНОГО ТВОРОГА

Известно, что в трехмерном пространстве стандартные фигуры с размерностью D<3 (точки, линии и поверхности) имеют нулевой объем. Это верно и для случайного творога.

Площадь предтворогов также ведет себя довольно просто. При D>2 она стремится к бесконечности, а при D<2 - к нулю. При D=2 створаживание практически не изменяет величину площади.

Аналогичным образом, по мере того, как m→∞, суммарная длина краев предтворогов стремится к бесконечности при D>1 и к нулю при D<1.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература