Читаем Фрактальная геометрия природы полностью

Асимптотический скейлинг. Асимптотически гиперболические С. В. К счастью, приведенное выше определение вовсе не является столь неопределенным, как может показаться на первый взгляд. При многих преобразованиях, как выясняется, для инвариантности требуется асимптотически гиперболическое распределение. Это означает, что должен существовать некоторый показатель D>0, такой, что пределы

и

определены и конечны, причем один из них положителен.

Распределение Парето. Термин «асимптотически гиперболическое распределение» можно рассматривать как синоним термина, хорошо знакомого статистикам-экономистам, а именно: распределение Парето. Вильфредо Парето – итальянский экономист, который пытался перевести законы механического равновесия в термины равновесия экономического, однако более прочно его имя запомнят, вероятнее всего, в связи с открытием им фундаментальной статистической закономерности: он обнаружил, что в определенных обществах количество индивидуумов с личным доходом U, превышающим некую большую величину u, распределяется приблизительно гиперболически, т.е. пропорционально u−D. (Несколько позже в этой главе мы еще вернемся к распределению доходов.)

«НОВЫЕ МЕТОДЫ СТАТИСТИЧЕСКОЙ ЭКОНОМИКИ» [342]

Гиперболические законы, аналогичные распределению Парето, были позднее обнаружены во многих отраслях экономики, а на объяснение их столь широкой распространенности потрачены немалые усилия. Однако позвольте мне прежде описать один еретический подход к этой задаче.

В такой области, как экономика, ни в коем случае нельзя забывать о том, что «данные», которыми нам приходится оперировать, представляет собой весьма разнородную смесь. Поэтому распределение данных является результатом совместного действия базового фиксированного «истинного распределения» и в высшей степени изменчивого «фильтра». В [342] я отмечаю, что асимптотически гиперболические распределения с D<2 очень «крепки» в этом смысле, т.е. многие самые разнообразные фильтры практически не изменяют их асимптотического поведения. С другой стороны, почти все прочие распределения таким свойством не обладают. Следовательно, гиперболическое истинное распределение можно наблюдать всегда: всевозможные наборы искаженных данных предполагают одно и то же распределение с одинаковым показателем D. При попытке применить тот же подход к большинству других распределений мы получим «хаотические» несовместимые результаты. Иными словами, практической альтернативой асимптотически гиперболическому распределению является не какое-то другое распределение, но хаос. Поскольку хаотические результаты, как правило, не публикуются (а если публикуются, то не замечаются), факт широкой распространенности асимптотически гиперболических распределений не представляет собой ничего неожиданного и мало может сообщить нам об истинной их распространенности в природе.

ЗАКОН СЛОВАРНОЙ ЧАСТОТНОСТИ ЦИПФА

Слово есть не что иное, как последовательность «правильных» букв, заканчивающаяся «неправильной» буквой, называемой пробелом. Возьмем образец речи некого индивидуума и расположим в ряд содержащиеся в этом образце слова по следующему принципу: на первое место поставим слово, встретившееся в тексте наибольшее количество раз, далее – второе по частоте употребления и т.д., причем слова с одинаковой частотой будем располагать в произвольном порядке. В такой классификации ρ обозначает порядковый номер (ранг) слова, встречающегося в речи с вероятностью P, а термин распределение частотности слов описывает соотношение между ρ и P.

Можно ожидать, что это соотношение подвержено самым беспорядочным изменениям, находящимся в зависимости от языка и индивидуальных особенностей оратора, однако в действительности это не так. Эмпирический закон, обнаруженный Ципфом [615] (о Дж. К. Ципфе смотрите очерк в главе 40), гласит, что соотношение между ρ и P «универсально», т.е. независимо от параметров, и имеет следующий вид:

P∝1/ρ.

А во втором приближении, которое я получил теоретически (тщетно пытаясь теоретически же вывести беспараметрический закон P∝1/ρ), все различия между языками и индивидуумами свелись к выражению

P=F(ρ+V)−1/D.

Поскольку ΣP=1, параметры D, F и V оказываются связаны соотношением F−1=∑(ρ+V)−1/D.

В совокупности эти параметры служат мерой того, насколько богат словарный запас данного индивидуума.

Основным параметром является показатель D. Представляется разумным измерять богатство словарного запаса через относительную частоту использования субъектом редких слов: взяв, например, в качестве эталона частоту слова ранга ρ=1000, а не слова ранга ρ=10. Эта относительная частота возрастает при увеличении D.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература