Читаем Фрактальная геометрия природы полностью

Притча о кладбище юных поэтов. В самой унылой части кладбища, там, где покоятся поэты и мыслители, кои скоропостижно скончались в самом расцвете своей юности, каждый памятник увенчан символом потери: половиной книги, огрызком пера или обломком какого – либо инструмента. Старый смотритель кладбища, и сам в юные годы не чуждый поэзии и учености, неустанно повторяет всем посетителям, что эти надгробные символы следует воспринимать не иначе, как совершенно буквально: «Всякий, кто здесь лежит, - заявляет он, - достиг достаточных успехов и много обещал в будущем; и размеры некоторых памятников отражают величие достижений тех, над чьими останками они возвышаются. Но как же нам оценить обманутые ожидания? Кое-кто из моих подопечных, останься он в живых, смог бы превзойти самих Леонарда Эйлера и Виктора Гюго – пусть не в гении, но хотя бы в плодовитости. Однако большинство из них, увы, оказались бы вскоре покинутыми своими музами. Поскольку в юности достижения и обещания в точности равны между собой, нам дóлжно полагать их равными и в момент скоропостижной кончины».

Ключ. Всякий, кто прекращает свою деятельность в молодости, останавливает на полпути многообещающую карьеру.

«Доказательство». Согласно А. Лотке, распределение количества научных публикаций одного автора является гиперболическим с показателем D=2. Это правило основано на таком качественном факте, что большинство людей пишут мало или совсем ничего, однако всегда находится несколько индивидуумов, которые пишут чрезвычайно много. Если упомянутое правило справедливо, то сколько бы человек ни написал в прошлом, можно ожидать, что в будущем он напишет еще, в среднем, столько же. Когда же он, наконец, остановится, ровно половина всех ожидаемых от него трудов так и останется невыполненной.

Комментарии. Единственный способ избежать всеобщего разочарования состоит в прекращении трудов в столь пожилом возрасте, чтобы при обсчете ожидаемого будущего ожидающим пришлось бы учитывать поправки на возраст. Коэффициент пропорциональности в эффекте Линди равен, разумеется, единице.

Притча об удаляющемся береге. Далеко – далеко отсюда расположен край под названием Земля Десяти Тысяч Озер. Озера эти имеют очень простые названия: Великое, Второе – По – Величине, …, N - е – По – Величине и и.д., вплоть до Десятитысячного – По – Величине. Великое озеро представляет собой огромное неведомое море – нет! целый океан – шириной не менее чем 1600 миль; ширина N - го – По – Величине озера составляет 1600N−0,8 миль, а самое маленькое озеро имеет всего лишь милю в поперечнике. Но над озерами всегда стоит плотный туман, не позволяющий видеть дальше, чем на милю, отчего, стоя на берегу, никогда нельзя сказать точно, какое именно озеро простирается перед вашими глазами. На суше нет никаких ориентиров, равно как нет там и местных жителей, к которым путешественник мог бы обратиться с вопросом. Однако если путешественник, стоящий на незнакомом берегу, твердо верит в математическое ожидание, он точно знает, что ожидаемое расстояние до противоположного берега равно в этом случае 5 милям. Путешественник садится в лодку, проплывает некоторое количество миль m, обнаруживает, что цели он еще не достиг, и подсчитывает новое ожидаемое расстояние до противоположного берега, которое составит уже 5m миль. Не водятся ли в этих озерах духи, которые и впрямь отодвигают желанный берег от незадачливого путешественника?

Ключ. Вышеописанное распределение диаметров озер представляет собой вариант распределения Корчака, с которым мы встречались в главах 12 и 30.

МАСШТАБНО-ИНВАРИАНТНЫЕ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

Вернемся, однако, к более серьезным вещам. Для того чтобы получить возможность говорить о масштабно-инвариантных случайных величинах, следует определить термин «масштабно-инвариантный» без привлечения геометрии. Дело в том, что единственной геометрической фигурой, которую можно поставить в соответствие случайной величине, является точка, а точка на части не делится. В качестве приемлемой замены можно предложить следующий вариант: будем говорить, что случайная величина X масштабно - инвариантна при преобразовании T(x), если распределения X и T(x) тождественны во всех отношениях, кроме масштаба.

Термин «преобразование» понимается здесь в широком смысле: например, сумма двух независимых реализаций случайной величины X рассматривается как результат преобразования X. Соответствующие величины следует называть масштабно-инвариантными при сложении, но мы будем называть их устойчивыми по Леви (см. главы 31, 32 и 39). В главе 39 (с. 501 и 528), кроме того, упоминаются и случайные величины, масштабно-инвариантные при взвешенном сложении.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература