Читаем Фрактальная геометрия природы полностью

Как бы то ни было, нам предстоит теперь воплотить скейлинговый принцип в действительность с тем, чтобы получить результат, отличный от броуновского движения. Для достижения этой цели я сделал весьма радикальный шаг: допустил, что приращения lnX(t+d)−lnX(t) имеет бесконечную дисперсию. До выхода в свет моих работ никто особо не задумывался при написании фразы «обозначим дисперсию через V». О предшествующем этой фразе допущении, что величина V конечна, даже не упоминалось … и совершенно справедливо не упоминалось, поскольку нам никогда не удастся дописать до конца научную работу, если мы будем перечислять все используемые нами допущения, безотносительно к степени их «общепринятости». О причинах такой своей радикальности я расскажу позже в этом же разделе. Хотя одна из причин настолько очевидна, что о ней даже не стоит и говорить: успешное допущение V=∞ существенно облегчает для меня введение в обиход кривых бесконечной длины и поверхностей бесконечной площади.

Наблюдаемое отклонение в поведении выборочной дисперсии изменения цен. «Типичные значения», используемые для выведения итоговых данных, представляет собой наименее изощренный уровень описательной статистики, однако когда дело доходит до описания изменений цен, обычные итоговые отчеты оказываются необычайно запутанными и абсолютно ненадежными. В самом деле, используя выборочное среднее для измерения параметра сдвига, а выборочное среднеквадратическое значение – для измерения дисперсии, мы обычно руководствуемся убеждением, что эти величины представляет собой «устойчивые характеристики, которые, в конце концов, сойдутся к неким общим для всей совокупности значениям. Однако из рисунка, помещенного в моей статье [352], видно, что поведение упомянутых величин в случае цен оказывается чрезвычайно уклончивым:

А. Значения среднего квадрата, соответствующие различным длинным подвыборкам, часто имеют различный порядок величины.

Б. При увеличении размера выборки средний квадрат теряет устойчивость. Он начинает беспорядочно метаться то вверх, то вниз, при этом демонстрируя, однако, общую тенденцию к увеличению.

В. Основной вклад в величину среднего квадрата осуществляется. Как правило, всего лишь несколькими квадратами. Если удалить эти так называемые резко отклоняющиеся значения, то оценка дисперсии часто изменяется на порядок.

Гипотеза о нестационарности. Эти свойства, взятые в совокупности – как, впрочем, и любое из них в отдельности, - использовались обычно для демонстрации всем интересующимся нестационарности процесса. Мое предварительное контрпредложение заключалось в том, что сам процесс в действительности стационарен, однако при этом чрезвычайно велик неизвестный теоретический второй момент. Если допустить, что этот момент велик, но конечен, то выборочные моменты сходятся согласно закону больших чисел, однако сходятся чрезвычайно медленно, и значение предела этой сходимости не имеет практически никакой реальной ценности.

Принцип бесконечной дисперсии. Мое следующее контрпредложение заключалось в объявлении среднего квадрата совокупности бесконечным. Те читатели, кто продирался сквозь настоящее эссе с самого начала, я уверен, давно свыклись с возможностью выбора между «очень большим» и «бесконечным», однако те, кто открыл книгу именно на этом месте, возможно, пребывают в ином расположении духа, - в ином расположении духа пребывали, как выяснилось, и мои читатели в 1962 г. Всякому, кто получил обычное статистическое образование, бесконечная дисперсия представляется в лучшем случае чем-то жутковатым, а в худшем – эксцентричным. В действительности же, если «бесконечное» и отличается чем-то от «очень большого», то, судя по выборочным моментам, эту разницу заметить невозможно. Кроме того, из бесконечной дисперсии величины X никоим образом не следует, что сама величина X не может быть конечной, а ее вероятность – равной 1. Например, переменная плотности Коши 1/π(1+x2) почти наверное конечна, однако имеет бесконечную дисперсию и бесконечное математическое ожидание. Таким образом, вопрос о выборе между переменными с очень большой и бесконечной дисперсией не следует решать a priori; решение должно зависеть исключительно от того, какой из вариантов окажется более удобен в данном конкретном случае. Что до меня, то я принимаю идею бесконечной дисперсии, потому что она позволяет сохранить масштабную инвариантность.

УСТОЙЧИВАЯ МОДЕЛЬ ЛЕВИ [341]

В работе [341] я сочетаю скейлинговый принцип с вполне приемлемой идеей, суть которой заключается в том, что последовательные изменения цен независимы с нулевым ожиданием; кроме того, я допускаю здесь, что дисперсия ценовых изменений бесконечна. Из краткого математического рассуждения вытекает предположение о том, что изменения цен подчиняются устойчивому распределению Леви, о котором говорится в главах 32, 33 и 39.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература