Читаем Фрактальная геометрия природы полностью

Обобщенный закон Ципфа также выполняется внутри определенных ограниченных словарных составов. Например, специалисты в области одной эзотерической дисциплины, называемой агиоантропонимией и занимающейся исследованием случаев использования имен святых для именования обычных людей (см. [322]), установили, что к таким именам закон Ципфа вполне применим и к фамилиям. Означает ли это, что соответствующие деревья масштабно - инвариантны?

ПоказательDесть фрактальная размерность. Мы заметили, что показатель D формально является фрактальной размерностью. Это наблюдение не столь поверхностно, как может показаться. В самом деле, если перед словом (в том виде, в каком мы его определили) поставить десятичную запятую, то это слово окажется ничем иным, как числом в интервале от 0 до 1, записанным в системе счисления с основанием (N+1) и содержащим нули только в конце. Отметим такие числа на интервале [0,1] и добавим сюда предельные точки этого множества. Построение, в сущности, сводится к удалению из интервала [0,1] всех чисел, содержащих нули в иных, кроме конца, позициях. В результате получаем канторову пыль, фрактальная размерность которой в точности равна D.

Что же касается других, отличных от простейших, масштабно-инвариантных лексикографических деревьев, к которым мы обращались выше за обобщенным доказательством закона Ципфа, то они аналогичным образом соответствуют обобщенным канторовым множествам с размерностью D. Уравнение для D в [326] представляет собой матричное обобщение определения размерности подобия с помощью равенства NrD=1.

Дальнейшее обобщение: случайD>1. Любопытно, что условие D<1 вовсе не является универсальным. Примеры, в которых обобщенный закон Ципфа выполняется, но оценка размерности D удовлетворяет неравенству D>1, весьма редки, однако, несомненно, имеют место. Для описания роли особого значения D=1 допустим, что закон P=F(ρ+V)−1/D выполняется только до некоторого значения ρ=ρ*≤∞. При D<1 не возникает никаких трудностей с составлением бесконечных словарей, предполагаемых вышеприведенными теоретическими рассуждениями. Однако при D≥1 бесконечный ряд ∑(ρ+V)−1/D расходится. Следовательно, согласно условиям ∑P=1 и F>0, величина P* должна быть конечна, т.е. словарь должен содержать конечное число слов.

В самом деле, размерность D>1, как выясняется, встречается только в тех случаях, когда словарь противоестественным образом ограничен какими-то внешними искусственными средствами (как, например, в случае вставок латинским шрифтом в нелатинский текст). Такие особые случаи рассматриваются в моих статьях, посвященных этой теме. Поскольку построение, ограниченное конечным количеством точек, не может дать фрактального множества, величину D>1 не следует интерпретировать как фрактальную размерность.

ТЕМПЕРАТУРА ПОВЕСТВОВАНИЯ

Вышеописанные отклонения допускают на мгновение совершенно иную интерпретацию, идею которой мы позаимствовали в статистической термодинамике. Аналогами физической энергии и физической энтропии послужат стоимость кодирования и информация Шеннона. А показатель D выступит в роли «температуры повествования». Чем «горячее» речь, тем больше вероятность употребления редких слов.

Случай D<1 соответствует стандартному случаю, в котором формальный эквивалент энергии не ограничен сверху.

С другой стороны, случай, в котором слова настолько «горячи», что это приводит в результате к D>1, предполагает в высшей степени необычное наличие у энергии конечной верхней границы.

Вскоре после того, как я описал эту резкую дихотомию в терминах лингвистической статистики, независимо от меня был найден ее физический аналог. Обратная физическая температура 1/θ имеет наименьшее значение – и даже обращается в нуль, - когда тело нагрето до наивысшей температуры. Норманн Рэмзи предположил, что если тело подвергать дальнейшему нагреву, величина 1/θ должна стать отрицательной. Обсуждению этого параллелизма посвящена моя статья [360].

В термодинамике объемные свойства объектов выводятся на основании микроканонической равно вероятности. Поскольку молекулы мы в лицо не различаем, допущения касательно их возможных состояний не вызывают у нас сильных эмоций, однако слова обладают ярко выраженной индивидуальностью, поэтому при изучении языка допущение о равновероятности вряд ли будет имеет успех.

Предыдущая аналогия становится особенно уместной в рамках определенных обобщенных подходов к термодинамике. Рискуя заслужить обвинение в чрезмерном цитировании работ, имеющих лишь косвенное отношение к настоящему эссе, все же скажу: один из таких формализмов я рассматривал в статьях [339, 344].

ЗАКОН ДОХОДОВ ПАРЕТО

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература