верхней и нижней d
- протяженностью множества S. Если они равны, их значение совпадает с d - протяженностью множества S. Минковский также отмечает, что в случае стандартных евклидовых фигур существует некая величина D, такая, что при d>D верхняя протяженность S обращается в нуль, а при d нижняя протяженность S бесконечна.2. БУЛИГАН
Обобщение определения Минковского на случай нецелочисленных d
было предпринято Булиганом в [47, 48]. На роль размерности Минковского – Булигана DMB из упомянутых выше пределов, пожалуй, больше подходит liminf, способный принимать дробные значения.Булиган, безусловно, понимал, что размерность D
MB подчас противоречит здравому смыслу и, в общем, менее удобна, чем размерность Хаусдорфа – Безиковича D. Однако она часто совпадает с D и легче поддается оценке, а значит, может оказаться полезной. В [255] (с. 29) рассматривается случай E=1 и подтверждается, что размерность DMB часто равна D, может быть больше D, но не может быть меньше.3. ПОНТРЯГИН И ШНИРЕЛЬМАН. КОЛМОГОРОВ И ТИХОМИРОВ
Среди всевозможных наборов шаров радиуса ρ
, покрывающих множество S в метрическом пространстве Ω, наиболее экономичным по определению является тот, который содержит наименьшее количество шаров. Если множество S ограничено, это наименьшее количество конечно и может быть обозначено как N(ρ). Учитывая это обстоятельство, Понтрягин и Шнирельман [481] выдвинули в качестве альтернативного определения размерности следующее выражение:.
Дальнейшее развитие этот подход получил в работе Колмогорова и Тихомирова [278], авторы которой, почерпнув вдохновение в шенноновской теории информации, окрестили величину lnN(ρ)
ρ - энтропией множества S. Хокс [204] называет соответствующую размерность нижней энтропийной размерностью, а ее вариант, получаемый заменой liminf на limsup - верхней энтропийной размерностью. Кроме того, Хокс показывает, что размерность Хаусдорфа – Безиковича не может превышать нижней энтропийной размерности; они часто совпадают, но не всегда.В [278] рассматривается также величина M(ρ)
, определяемая как наибольшее количество точек в S, отстоящих друг от друга на расстояние, превышающее 2ρ . Для множеств, расположенных на прямой, M(ρ)=N(ρ). Для других множеств величину
можно считать еще одной размерностью.
У Колмогорова и Тихомирова [278] величина lnM(ρ)
называется емкостью, что в высшей степени неудачно ввиду того, что в теории потенциала уже существует такой термин с совершенно иным и, на мой взгляд, более оправданным значением. В особенности следует избегать искушения определить выведенную в предыдущем абзаце размерность, как емкостную размерность. См. раздел потенциалы и емкости, 3.4. БЕЗИКОВИЧ И ТЕЙЛОР. БОЙД
Из главы 8 нам известно, что в том случае, когда пространство Ω
представляет собой интервал [0,1] или вещественную прямую, пыль S полностью определяется своим дополнением, т.е. объединением максимальных открытых интервалов или пустот (в некоторых построениях все пустоты являются тремами).Троичная канторова пыль
Cна интервале [0,1]. Длины пустот составляют в сумме единицу и следуют гиперболическому распределению P(U>u)=Fu−D. Следовательно, порядок длины λn n - й пустоты (в порядке уменьшения размера) равен n−1/D.Обобщенные линейные множества нулевой меры Лебега.
Поведение длины λn при n→∞ рассмотрено в работе Безиковича и Телора [29]. Существует некоторый вещественный показатель DBT, такой, что ряд ∑λnd сходится при d>DBT (в частности, сходится к 1 при d=1). Таким образом, DBT представляет собой инфимум вещественных чисел d, при которых ∑λnd<∞. Можно показать, что DBT≥D. Хокс (см. [204], с. 707) доказывает, что величина DBT совпадает с верхней энтропийной размерностью, причем иногда легче поддается оценке.Предостережение.
Если S не является множеством нулевой меры, показатель DBT не является размерностью. Этот показатель сродни показателю, описанному в главе 15, и показателю Δ из главы 17.Показатель аполлониевой упаковки.
У показателя DBT имеется аналог в случае аполлониевой упаковки (см. главу 18). Он был введен в 1966 г. З. А. Мельзаком, а Бойд [51] показывает, что этот показатель представляет собой (как и предполагалось) размерность Хаусдорфа – Безиковича остаточного множества.РАЗМЕРНОСТЬ ПОДОБИЯ: НЕКОТОРЫЕ ТОНКОСТИ
В некоторых открытых множествах (т.е. не содержащих свои предельные точки) можно наблюдать серьезное несоответствие размерностей.