Читаем Фрактальная геометрия природы полностью

верхней и нижней d - протяженностью множества S. Если они равны, их значение совпадает с d - протяженностью множества S. Минковский также отмечает, что в случае стандартных евклидовых фигур существует некая величина D, такая, что при d>D верхняя протяженность S обращается в нуль, а при d нижняя протяженность S бесконечна.

2. БУЛИГАН

Обобщение определения Минковского на случай нецелочисленных d было предпринято Булиганом в [47, 48]. На роль размерности Минковского – Булигана DMB из упомянутых выше пределов, пожалуй, больше подходит liminf, способный принимать дробные значения.

Булиган, безусловно, понимал, что размерность DMB подчас противоречит здравому смыслу и, в общем, менее удобна, чем размерность Хаусдорфа – Безиковича D. Однако она часто совпадает с D и легче поддается оценке, а значит, может оказаться полезной. В [255] (с. 29) рассматривается случай E=1 и подтверждается, что размерность DMB часто равна D, может быть больше D, но не может быть меньше.

3. ПОНТРЯГИН И ШНИРЕЛЬМАН. КОЛМОГОРОВ И ТИХОМИРОВ

Среди всевозможных наборов шаров радиуса ρ, покрывающих множество S в метрическом пространстве Ω, наиболее экономичным по определению является тот, который содержит наименьшее количество шаров. Если множество S ограничено, это наименьшее количество конечно и может быть обозначено как N(ρ). Учитывая это обстоятельство, Понтрягин и Шнирельман [481] выдвинули в качестве альтернативного определения размерности следующее выражение:

.

Дальнейшее развитие этот подход получил в работе Колмогорова и Тихомирова [278], авторы которой, почерпнув вдохновение в шенноновской теории информации, окрестили величину lnN(ρ) ρ - энтропией множества S. Хокс [204] называет соответствующую размерность нижней энтропийной размерностью, а ее вариант, получаемый заменой liminf на limsup - верхней энтропийной размерностью. Кроме того, Хокс показывает, что размерность Хаусдорфа – Безиковича не может превышать нижней энтропийной размерности; они часто совпадают, но не всегда.

В [278] рассматривается также величина M(ρ), определяемая как наибольшее количество точек в S, отстоящих друг от друга на расстояние, превышающее . Для множеств, расположенных на прямой, M(ρ)=N(ρ). Для других множеств величину

можно считать еще одной размерностью.

У Колмогорова и Тихомирова [278] величина lnM(ρ) называется емкостью, что в высшей степени неудачно ввиду того, что в теории потенциала уже существует такой термин с совершенно иным и, на мой взгляд, более оправданным значением. В особенности следует избегать искушения определить выведенную в предыдущем абзаце размерность, как емкостную размерность. См. раздел потенциалы и емкости, 3.

4. БЕЗИКОВИЧ И ТЕЙЛОР. БОЙД

Из главы 8 нам известно, что в том случае, когда пространство Ω представляет собой интервал [0,1] или вещественную прямую, пыль S полностью определяется своим дополнением, т.е. объединением максимальных открытых интервалов или пустот (в некоторых построениях все пустоты являются тремами).

Троичная канторова пыльCна интервале [0,1]. Длины пустот составляют в сумме единицу и следуют гиперболическому распределению P(U>u)=Fu−D. Следовательно, порядок длины λn n - й пустоты (в порядке уменьшения размера) равен n−1/D.

Обобщенные линейные множества нулевой меры Лебега. Поведение длины λn при n→∞ рассмотрено в работе Безиковича и Телора [29]. Существует некоторый вещественный показатель DBT, такой, что ряд ∑λnd сходится при d>DBT (в частности, сходится к 1 при d=1). Таким образом, DBT представляет собой инфимум вещественных чисел d, при которых ∑λnd<∞. Можно показать, что DBT≥D. Хокс (см. [204], с. 707) доказывает, что величина DBT совпадает с верхней энтропийной размерностью, причем иногда легче поддается оценке.

Предостережение. Если S не является множеством нулевой меры, показатель DBT не является размерностью. Этот показатель сродни показателю, описанному в главе 15, и показателю Δ из главы 17.

Показатель аполлониевой упаковки. У показателя DBT имеется аналог в случае аполлониевой упаковки (см. главу 18). Он был введен в 1966 г. З. А. Мельзаком, а Бойд [51] показывает, что этот показатель представляет собой (как и предполагалось) размерность Хаусдорфа – Безиковича остаточного множества.

РАЗМЕРНОСТЬ ПОДОБИЯ: НЕКОТОРЫЕ ТОНКОСТИ

В некоторых открытых множествах (т.е. не содержащих свои предельные точки) можно наблюдать серьезное несоответствие размерностей.


Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература